首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Manganese oxides with distorted perovskite structure have attracted much attention during the last decade due to their colossal magnetoresistance (CMR), and the strong correlations among the various degrees of freedom involved. In particular, Pr1−xCaxMnO3 compounds present in a wide Ca-doping range a charge ordering phenomenon, consisting of real space ordering of Mn3+ and Mn4+ in alternate lattice sites below a certain temperature TCO. This ordering brings about a lattice distortion and a large hardening of the sound velocity below TCO. Tomioka et al. have observed that an applied magnetic field can melt this charge ordered state and induce a transition from an insulating to a metallic state. In order to study the effects of this charge order melting, ultrasonic longitudinal sound velocity measurements were performed on polycrystalline Pr1−xCaxMnO3 (x=0.35 and 0.5) as a function of magnetic field and temperature. Interesting anomalies were found related to the melting of the charge ordered phase into a metal-like state even at low temperatures.  相似文献   

2.
On the basis of the FDUC model and the hypothesis of the constant covalent radii, the expressions of the atomic nearest-neighbor and the next-nearest-neighbor bond-lengths were derived for A1−xBxC1−yDy III–V quaternary solid solutions. This set of bond-length expressions predicts the averaged bond-lengths and bond angles at any concentration (x, y) for the III–V pseudobinary and quaternary solid solutions, which are only dependent on the lattice parameters and the concentrations of the pure end compounds. When x=0, 1 or y=0, 1, A1−xBxC1−yDy III–V quaternary solid solutions degenerate into the relative pseudobinary solid solutions, in which the nearest-neighbor and the next-nearest-neighbor bond-lengths agree well with the experimental results. Further discussion and comparison with other theoretical models are also given in this paper.  相似文献   

3.
High quality GaN epitaxial layers were obtained with AlxGa1−xN buffer layers on 6H–SiC substrates. The low-pressure metalorganic chemical vapor deposition (LP-MOCVD) method was used. The 500 Å thick buffer layers of AlxGa1−xN (0≤x≤1) were deposited on SiC substrates at 1025°C. The FWHM of GaN (0004) X-ray curves are 2–3 arcmin, which vary with the Al content in AlxGa1−xN buffer layers. An optimum Al content is found to be 0.18. The best GaN epitaxial film has the mobility and carrier concentration about 564 cm2 V−1 s−1 and 1.6×1017 cm−3 at 300 K. The splitting diffraction angle between GaN and AlxGa1−xN were also analyzed from X-ray diffraction curves.  相似文献   

4.
The measurements of the internal friction and dynamic shear modulus as well as differential scanning calorimetry have been performed in order to investigate the structural relaxation and crystallization of Zr41Ti14Cu12.5Ni10−xBe22.5Fex (x=0 or 2) bulk metallic glasses. It is found that the glass transition is retarded and the thermal stability of supercooled liquid is increased by the Fe addition. The experimental results are well analyzed using a physical model, which can characterize atomic mobility and mechanical response of disordered condensed materials.  相似文献   

5.
The effects of bismuth doping on the oxygen-ion diffusion in oxide-ion conductors La2−xBixMo2O9 (x=0.05, 0.1, and 0.15) have been studied by both internal friction and dielectric relaxation techniques. Two internal friction peaks of relaxation type (P1 and P2 peak) were observed at a measurement frequency of 4 Hz around 380 and 430 K, respectively. As for the dielectric measurement, a prominent dielectric relaxation peak (Pd) was found in all the Bi-doped samples around 700 K at a measurement frequency of 50 kHz, which actually consists of two sub-peaks (denoted as Pd1 and Pd2 peak). With increasing Bi-doping content, two peaks shift to higher temperature and decrease in height, while the activation energy of both peaks increases. The main reason was interpreted as the introduction of the lone-pair electrons of bismuth, which tends to block the diffusion of oxygen ion.  相似文献   

6.
We study the effect of nitrogen content in modulation-doped GaAs/GaAs1 − xNx/GaAs/GaAlAs:(Si) quantum well using low-temperature photoluminescence spectroscopy. The samples were grown on GaAs (001) substrates by molecular-beam epitaxy with different nitrogen compositions. The variation of the nitrogen composition from 0.04% to 0.32% associated to the bi-dimensional electron gas gives a new interaction mode between the nitrogen localized states and the GaAs1 − xNx/GaAs energies levels. The red-shift observed in photoluminescence spectra as function of nitrogen content has been interpreted in the frame of the band anticrossing model.  相似文献   

7.
The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1−xCoxO3 for 0≤x≤0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log σT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions.  相似文献   

8.
Thin films of Mo1−xSnx, continuously and linearly mapped for 0<x<1, have been prepared by d.c. magnetron sputter deposition under various growth conditions. X-ray diffraction results indicate that as x in high-pressure deposited Mo1−xSnx increases from 0 to approximately 0.45, the bcc lattice expands and no new phases are formed. At low deposition pressures, Mo3Sn, a β-tungsten structured phase, is formed along with the bcc Mo–Sn solid solution for 0.1<x<0.3. The variation of the lattice parameter for this intermetallic phase also indicates that solid solutions, possibly of the form Mo3+ySn, are being formed. These materials are of special interest as anode candidates in lithium-ion batteries.  相似文献   

9.
Nanocrystalline Nd2(Zr1 − xSnx)2O7 series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.  相似文献   

10.
SrMgxTi1 - xO3 nanocrystals (x = 0.1–0.6) were synthesized by the stearic acid gel method. Powder samples were characterized by X-ray diffraction and X-ray photoelectron (XP) spectroscopy. The results showed that the lattice parameter a and the O 1s XP spectrum changed not only with the Mg content x but also with the grain size d of the samples. The conductivity of a thick film specimen fabricated on an aluminium oxide wafer was investigated in a nitrogen—oxygen atmosphere.  相似文献   

11.
The phase relations in CeO2–Eu2O3 and CeO2–Sm2O3 systems have been established under slow-cooled conditions from 1400 °C. The two-phase relations differ as the CeO2–Eu2O3 system showed only two monophasic phase fields, namely F-type cubic and C-type cubic, whereas CeO2–Sm2O3 system showed three phase fields namely F-type cubic, C-type cubic and a biphasic field comprising of C-type cubic and monoclinic phase. An interesting observation of this investigation is the stabilization of C-type rare-earth oxide after Ce4+ substitution, which is attributed to decrease in average cationic size on Ce4+ substitution at RE3+ site. The lattice thermal expansion behavior of F-type solid solution and C-type solid solution in CeO2–Eu2O3 system was investigated by high-temperature XRD.  相似文献   

12.
13.
The mechanical properties like hardness, Hv and compressive strength, σ of Ni1−xZnxFe2O4 (x = 0.2, 0.3, 0.4 and 0.5) prepared by the non-conventional flash combustion and citrate-gel decomposition techniques are studied and reported. It is observed that there is an increase in hardness with zinc content as well as sintering temperature. The hardness in the order of 2.0–3.63 GPa and compressive strength in the order of 150–240 MPa are obtained for Ni–Zn ferrites prepared by these non-conventional techniques. The influence of density, porosity and microstructure on hardness and compressive strength of Ni–Zn ferrites with respect to sintering temperature was studied.  相似文献   

14.
From the analysis of the variation of optical absorption coefficient with incident photon energy between 0.8 and 2.6 eV, obtained from ellipsometric data, the energy EG of the fundamental absorption edge and EG′ of the forbidden direct transition for CuInxGa1−xSe2 alloys are estimated. The change in EG and the spin-orbit splitting ΔSO=EG′−EG with the composition x can be represented by parabolic expression of the form EG(x)=EG(0)+ax+bx2 and ΔSO(x)=ΔSO(0)+ax+bx2, respectively. b and b′ are called “bowing parameters”. Theoretical fit gives a=0.875 eV, b=0.198 eV, a′=0.341 eV and b′=−0.431 eV. The positive sign of b and negative sign of b′ are in agreement with the theoretical prediction of Wei and Zunger [Phys. Rev. B 39 (1989) 6279].  相似文献   

15.
Ti1−xVxO2 solid solution film photoelectrodes were prepared by the dip-coating sol–gel method. X-ray diffraction and X-ray photoelectron spectroscopy were employed to ensure the formation of the solid solution and their composition. Obvious photoresponses were observed in the visible region for the solid solution film electrodes with x0.05 and the red shift of the photoresponse was enhanced with increasing x. Moreover, the solid solution film electrodes were found to be photoelectrochemically stable. However, the onset potential of photocurrent shifted positively with increasing x. Band model of the solid solution was suggested to explain the effects of the vanadium incorporation on the photoelectrochemical properties.  相似文献   

16.
Ingots containing single crystals of the quaternary alloys CuIn1 − xAlxS2 (CIAS) were grown by a horizontal Bridgman method for compositions with x = 0, 0.2 and x = 0.4. (CIAS) thin films were prepared by thermal evaporation technique on to glass substrates. Structural and optical properties of the films were studied in function of the Al content. Band gap, and absorption coefficients were determined from the analysis of the optical spectra (transmittance and reflectance as a function of wavelength) recorded by a spectrophotometer. The samples have direct bandgap energies of 1.95 eV (x = 0), 2.06 eV (x = 0,2) and 2.1 eV (x = 0,4). These optical results were correlated with the structural analysis by X-Ray diffraction.  相似文献   

17.
First principles electronic structure method based on the density functional theory and the local density approximation is used to investigate the structural and electronic properties of C3N4−nPn (n=0,1,2,3,4). It is found that the N-rich compounds energetically favor structures with sp2 bonding, while the pseudocubic structure which is characterized by sp3 bonding is preferred by the P-rich compounds. Even though C3N4 is a wide-gap semiconductor, the band gap of C3N4−nPn decreases rapidly when N is gradually substituted with P, and the P-rich compounds are predicted to be metallic or narrow-gap semiconductors.  相似文献   

18.
Gadolinium-doped, yttrium oxide thin films have been deposited on silicon (001) substrates by radio-frequency (RF) magnetron reactive sputtering that exhibit cathodoluminescence (CL) at ultraviolet frequencies. The maximum CL brightness occurred at λ314–315 nm characteristic of the 6P3 / 2 → 8S (λ = 314 nm) transition observed in Gd-doped, yttrium oxide powders. The radiative recombination takes place at the rare earth activator Gd3+ site embedded in the Y2O3−δ host; the optical transition resides within the band gap of the Y2O3−δ host and the transition observed is characteristic of atomic gadolinium. A combinatorial approach to sputtering was used to deposit a film of variable composition from 1 to 23 at.% Gd in Y2O3−δ in order to rapidly discern the composition node of optimal CL brightness. A simulation was created for the purpose of predicting the film combinatorial composition for binary and ternary alloys prior to sputtering experiments in order to facilitate our combinatorial thin film synthesis technique. The model prediction varied from the real experimental composition profile by only 2.2 at.% Gd ± 1.6 at.% proving the predictor as a useful aide to complement combinatorial thin film experiments. A film of composition Y1.56Gd0.44O3.25 (8.3 at.% Gd) yielded the maximum CL brightness. CL brightness increased continuously up to the 8.3 at.% Gd composition due to the increased number of activators present in the host. Beyond this composition the brightness drastically decreased. The oxygen composition in the combinatorial film was strongly dependent on the Gd composition; films were sub-stoichiometric δ > 0 below 6 at.% Gd and was over-stoichiometric δ < 0 beyond this composition.  相似文献   

19.
In this study, the LSCO (lanthanum strontium cobalt oxide) family has been investigated for thin film thermocouple applications. Thin films of La(1−x)SrxCoO3 (x=0.3,0.5,0.7) were prepared on sapphire substrates by pulsed laser deposition. The films were annealed at different temperatures in air and characterized for phase, composition and microstructure to determine their thermal stability. From the phase and composition analyses, it is clear that as the Sr content in LSCO increases, the thermal stability decreases. Among the three compositions studied, x=0.3 had the best phase and chemical stability, and microstructural properties. It was observed that La0.7Sr0.3CoO3 possesses excellent phase, composition and microstructural stability up to 1273 K. Above 1273 K, however, LSCO decomposes resulting in the loss of cobalt and formation of individual oxide phases. Electrical resistivity and Seebeck coefficients were measured in situ as a function of temperature in air up to 1023 K. The electrical and Seebeck coefficient properties were found to be stable for all the three compositions up to 1023 K and studies indicated that electrical conduction occurs through a small polaron hopping mechanism. In conclusion, LSCO possessed good thermal stability in air up to 1273 K and exhibits excellent potential in thin film thermocouple applications.  相似文献   

20.
La1−xCaxVO3 composition-spread film library was fabricated by combinatorial pulsed laser deposition and their thermoelectric properties were evaluated paralelly by the multi-channel probes of Seebeck coefficient and electric conductivity. Concurrent X-ray analysis verified the formation of solid soluted films in the full composition range (0x1) as judged from the linear variation of the lattice constants. The Seebeck coefficients of La1−xCaxVO3 changed from a large negative value to almost zero with the increase of x, due presumably to the variation of valence in vanadium ions.The power factor in this library was as high as 0.6 μW/cm K2, which was obtained at x=0, i.e. pure LaVO3 grown at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号