首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
对几种玻璃纤维织物增强酚醛树脂复合材料进行了双向滑动摩擦试验,考察织物结构和基体树脂对复合材料的摩擦磨损性能的影响。研究结果表明:通过添加自润滑颗粒可提高复合材料的摩擦磨损性能,其中石墨的耐摩擦磨损效果比聚四氟乙烯(PTFE)显著;织物结构对复合材料摩擦性能的影响,主要受控于织物的表面粗糙度和织物结构对复合材料树脂体积分数的影响。此外,复合材料存在一个较优的树脂体积分数范围,在此范围内,复合材料的摩擦磨损性能较为优异。  相似文献   

2.
陈向荣  姜文军 《塑料》2003,32(2):23-25
用M 2000型摩擦磨损试验机研究了干摩擦条件下硫酸钡、载荷、对磨时间对聚四氟乙烯复合材料摩擦磨损性能的影响。结果表明:在本实验采用的条件下,硫酸钡/PTFE复合材料的摩擦因数随着硫酸钡含量的增加而增大,抗磨损能力则有一个最佳含量;随着载荷的增加,材料的摩擦因数、磨损量和磨痕宽度也随之增大;磨损量随着对磨时间的延长,波动变小并趋于稳定。  相似文献   

3.
改性聚甲醛摩擦磨损性能的研究   总被引:6,自引:0,他引:6  
  相似文献   

4.
为改善聚四氟乙烯(PTFE)高磨耗的缺点,通过冷压烧结成型工艺制备了玻璃纤维(GF)填充改性PTFE复合材料,探究了不同GF添加比例的PTFE/GF复合材料在不同转速下的摩擦磨损情况。采用三维视频显微镜观察了样品的表面磨痕深度,并借助扫描电子显微镜观察摩擦表面形貌同时分析磨损机理。结果表明,填充GF后的PTFE复合材料其摩擦系数虽有一定程度的升高,但其体积磨损率却大幅降低。当GF质量分数为20%时,复合材料的体积磨损率降到最低,并在转速为80 r/min时较纯PTFE降低了93.56%。观察分析微观形貌发现,随着GF含量的增大,复合材料的磨损机理逐渐由纯PTFE的犁耕磨损和粘着磨损向磨粒磨损转变,当GF含量为25%时,出现轻微的疲劳磨损。  相似文献   

5.
沈友良 《中国塑料》1992,6(4):25-28
聚甲醛(POM)分别与摩擦系数很低的聚四氟乙烯(PTFE)和液体润滑油(OIL)共混改性后,其摩擦磨损性能得到了明显的改善。且 POM/PTFE 和 POM/OIL 共混体系也表现出较为理想的力学性能,文章还指出 POM/OIL 的共混方法是其性能得以改善的关键。  相似文献   

6.
分别研究了不同含量碳纤维(CF)、玻璃纤维(GF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下的摩擦学性能,同时考察了PTFE复合材料在酸中的腐蚀行为,探讨了相关机理。结果表明,在酸中GF能够提高PTFE的耐磨性,比CF在提高PTFE耐磨性方面具有更好的优势。就酸溶液中的耐磨性和耐腐蚀性而言,15 %(质量分数,下同)是填料的最佳含量,此时GF和CF填充的PTFE,耐磨性分别较纯PTFE提高了7.7和4.4倍;当填料的含量超过15 %时,复合材料的耐磨性和耐腐蚀性均下降,主要是由于此时犁削和磨粒磨损是PTFE复合材料的主要磨损机制。由于酸溶液的冷却和润滑作用,硫酸溶液中PTFE复合材料的摩擦因数大幅降低,但酸溶液抑制了对磨面上转移膜的形成。  相似文献   

7.
路琴  张静  何春霞 《中国塑料》2008,22(4):21-24
利用摩擦磨损试验机考察了填料含量及载荷对纳米氮化钛(TiN)填充聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察分析磨损表面形貌,探讨了磨损机理。结果表明,纳米TiN可以提高PTFE的硬度和耐磨性,当纳米TiN质量分数为7%时,PTFE纳米TiN复合材料的磨损量最小;随载荷的增大,PTFE/TiN复合材料的磨损量增加。PTFE纳米TiN复合材料的摩擦因数比纯PTFE小。  相似文献   

8.
SiC一石墨填充PTFE复合材料的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
在聚四氟乙烯(PTFE)中分别填充碳化硅(SiC),石墨及不同配比的SiC-石墨混合物,制备了具有不同力学和摩擦学性能的PTFE基复合材料。探讨了填料组成对材料硬度及干摩擦条件下与不锈钢环对磨时摩擦磨损性能的影响,并研究了PTFE基复合材料的磨损表面和磨屑形貌。结果表明,填充适量的SiC-石墨混合物既能增加PTFE的承载能力,又可保持良好的摩擦学性能;不同复合材料的磨损机理不同,磨损表面有磨屑形貌  相似文献   

9.
马国军  黄晓鹏  万芳新 《化工机械》2010,37(2):145-147,162
用冷压成型法制备了纳米、微米石墨填充PTFE基复合材料,考察了复合材料的硬度,研究了干摩擦条件下复合材料摩擦磨损性能。  相似文献   

10.
采用不同偶联剂对纳米碳化硅进行表面处理后,制备了聚四氟乙烯/纳米碳化硅复合材料,考察了偶联剂种类和含量随载荷变化对复合材料摩擦磨损性能的影响,并利用扫描电子显微镜观察和分析了复合材料磨损表面形貌及其磨损机理。结果表明,经表面处理的纳米碳化硅填充后的复合材料硬度和摩擦磨损性能均有提高,以钛酸酯偶联剂(NDZ101)处理效果最好;随着偶联剂含量的增大,钛酸酯偶联剂(NDZ101)处理的复合材料的磨损量和摩擦因数均增大,偶联剂最佳含量为填料质量的1 %;偶联剂处理后的纳米碳化硅与基体之间形成了良好的界面,复合材料的磨损以黏着磨损和磨粒磨损为主。  相似文献   

11.
对不同纳米材料Si3N4、SiC、石墨、碳纳米管(CNTs)填充聚四氟乙烯(PTFE)复合材料进行了拉伸和硬度试验,观察了复合材料拉伸断面的微观结构。结果表明:几种填料均能不同程度地提高PTFE的硬度。不同填料对PTFE拉伸性能的影响不同,纳米SiC填充PTFE有较好的拉伸性能,碳纳米管的加入会使PTFE拉伸强度和断裂伸长率降幅较大,其复合材料呈脆性破坏。纳米SiC在PTFE基体中有较好的分散性,其与PTFE基体界面结合较好,而纳米Si3N4在PTFE中分散性不好,纳米石墨和碳纳米管与PTFE基体的界面结合不好。当SiC的质量分数为3%时,其综合性能最佳。  相似文献   

12.
采用熔融共混和模压成型方法,制备了玻璃纤维(GF)增强木质素/聚丙烯(PP)复合材料,研究复合材料力学性能、热性能、晶型结构和微观结构。结果表明:当GF加入质量分数为30%时,复合材料的冲击强度、弯曲强度和弯曲模量较未加GF的分别提高了1.21,1.74和0.79倍;热稳定性、结晶性和结晶速率也有明显的提高。利用扫描电镜观察其断裂形貌,探讨其增韧机理。  相似文献   

13.
胡福田  杨卓如 《塑料工业》2007,35(11):49-52,66
研究了空心玻璃微珠增强聚四氟乙烯复合材料的拉伸强度的变化。研究表明:复合材料的拉伸强度与空心玻璃微珠含量、烧结工艺条件和偶联剂的种类有关;用复合偶联剂处理过的玻璃微珠填充树脂,改善了微珠与树脂的相容性及分散性,从而提高了材料的拉伸强度。并对材料的拉伸强度进行了理论预测。  相似文献   

14.
以聚四氟乙烯(TPFE)为基体,通过添加10%、15%、20%、25%、30%的短切纤维制备纤维填充复合材料,研究了其摩擦磨损等相关性能。结果表明:短切纤维的填充增强了材料的压缩强度和硬度,但拉伸强度减弱;随着短切纤维含量的增多,磨痕宽度越来越小,材料的耐磨性能不断提高,摩擦系数也随之下降;电镜结果显示TPFE复合材料摩擦表面短切纤维分布均匀且无明显带状磨痕,但存在少量短切纤维剥离现象,分析发现剥离主要发生于摩擦的磨合阶段,不影响材料稳定磨损阶段的性能。  相似文献   

15.
混杂填料增强聚四氟乙烯复合材料的摩擦学性能研究   总被引:1,自引:0,他引:1  
路琴  张静  何春霞 《塑料》2008,37(3):15-17
采用MM-200型摩擦磨损试验机对纳米SiC、MoS2和石墨填充聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对摩时的摩擦磨损性能进行了研究,探讨了MoS2、石墨及纳米SiC的协同效应。认为纳米SiC的加入大大提高了复合材料的承载能力,石墨、MoS2的加入减少PTFE复合材料的摩擦因数。利用扫描电子显微镜(SEM)对PTFE复合材料的摩擦面进行了观察。结果表明:实验中5%nano-SiC和3%MoS2填充PTFE复合材料的摩擦磨损性能最好,且在高载荷下的摩擦磨损性能尤为突出,具有一定的应用价值。  相似文献   

16.
石墨,玻纤粉填充四氟乙烯模压制品性能研究   总被引:5,自引:0,他引:5  
本文从石墨、玻纤粉和聚四氟乙烯的化学组成和形态结构着手,利用电子显微镜、光学显微镜及X射线衍射、磨耗试验机等对石墨-玻纤粉-PTFE三元填充体系的共混形态结构和制品的物理-机械进行了研究。  相似文献   

17.
填充PTFE性能的初步研究   总被引:1,自引:0,他引:1  
本文采用正交设计法,对PTFE、石墨、玻璃纤维、铜粉的共混物进行配方筛选,找出了影响共混物主要性能:磨耗、比重、拉伸强度和断裂伸长率的主要因素,并对其原因作了解释。  相似文献   

18.
郭权 《广东化工》2009,36(7):238-239,271
文章介绍了一种典型的PTFE内衬石墨填料塔。对PTFE内衬石墨填料塔的安装质量提出了主要关注点,提出了安装前准备的相关技术特点及安装过程的质量控制要点。对此类塔的典型结构安装过程进行了分析,提出了安装此类塔的一般步骤和注意点,为塔安装的工程应用提供了实践经验和相关参数。通过分析PTFE内衬石墨填料塔的安装质量研,为工程应用提供了参考,为行业内的此类技术交流提供了交流方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号