共查询到19条相似文献,搜索用时 46 毫秒
2.
3.
为减少因大量的光谱信息带来的计算复杂及数据冗余带来的高光谱数据分类性能降低,该文提出一种非负稀疏图降维算法。首先,构建超完备块字典对高维高光谱数据进行非负稀疏表示。然后,根据块非负稀疏表示,分别构建内部非负稀疏图和惩罚非负稀疏图,基于单调递减函数定义边的权重以体现样本间的相似程度。最后,通过同时最大化异类和最小化同类非负稀疏重构样本间的距离,得到从高维到低维的最优映射关系,从而实现对高维高光谱数据的降维。AVIRIS 92AV3C高光谱数据上的实验结果表明,所提算法能以较少的训练样本获得较高的整体分类精度和Kappa系数。 相似文献
4.
5.
传统非负矩阵分解方法仅基于单层线性模型,现有的深度非负矩阵分解模型忽略了地物光谱的实际混合物理过程,仅从数学理论考虑深度分解。对此,文中从光谱混合的物理过程出发,综合非负矩阵分解和深度学习,将光谱混合过程进行反向建模,并充分考虑丰度的稀疏性和空间平滑性,构建了用于高光谱遥感影像解混的面向端元矩阵的全变差稀疏约束深度非负矩阵分解模型。通过模拟实验和真实实验,将文中所提方法与5种解混方法进行对比。结果表明,相较于面向丰度的深度非负矩阵分解算法,文中所提方法的平均光谱角距离和均方根误差均有所降低,取得了最佳解混结果。 相似文献
6.
针对稀疏表示理论用于高光谱图像异常目标检测存 在检测精度不高的问题,在对高光谱图像的空间特性和光谱特性充分分析基 础上,提出了基于空-谱结合的 稀疏高光谱异常目标检测算法。首先利用多尺度高斯滤波对原始高光谱图像进行滤波 处理,通过滤波减少高光谱图像 含有的噪声对异常目标的影响;对滤波之后的高光谱图像进行波段子集划分,划分依据是邻 波段间的相关系数;然后利用高 光谱图像稀疏差异指数对每个子空间进行异常目标检测;最后对检测结果进行叠加,得到最 终异常目标检测结果。采用真实 的AVIRIS高光谱图像对算法进行仿真验证的结果表明,本文算法检测精度高,虚警率低, 提高了稀疏表示理论用于高光谱异常目标的检测性能。 相似文献
7.
8.
针对图像理解中所需的图像检索,提出了一种新的图像检索方法。该方法将非负稀疏编码引入到ScSPM算法中进行图像的特征提取和表示,计算特征表示后图像之间的欧氏距离并排序。实验结果表明该方法在图像理解中能够有效地检索相关图像。 相似文献
10.
针对低秩稀疏矩阵分解的高光谱异常目标检测算法忽略了图像的空间信息,导致检测精度低的问题,提出了一种联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测算法。算法综合利用了高光谱图像的光谱信号与空间信号,并与图像自身的稀疏性相结合,对经典的基于低秩稀疏矩阵分解的目标检测算法进行改进,该算法以待测像元为中心构建一定大小的空间窗,计算中心像元与邻域内其他像元的空间相似度权值和光谱相似度权值,通过计算邻域内其他像元对中心像元的比例权值得到了中心像元的重构光谱值并作差得到两者的残差矩阵;最后基于低秩稀疏矩阵分解的高光谱异常目标检测算法得到图像的稀疏矩阵,将代表异常目标信息的稀疏矩阵和残差矩阵相加并求解矩阵行向量之间的欧式距离得到像元的异常度,设置阈值,得到检测结果。为验证所提算法的检测性能,采用了真实的高光谱数据进行仿真实验,并与现有算法进行对比,结果表明该算法能够得到更高的检测精度。 相似文献
11.
为了实现复杂背景下的红外小目标检测, 提出了一种基于协作稀疏编码(CSC)的红外小目标检测算法。首先通过滑动窗口法提取待测 试图像的图像块,并将 其转化为列向量作为超完备字典;然后采用CSC模型计算每一个图像块在超完 备字典中的系数矩 阵以及误差矩阵,其中系数矩阵的L2,1范数代表图像的背景信息,而误 差矩阵的L1,2范数代表红外小目标信 息;进而利用ADMM(alternating directional method of multiplier)算法解 算,得到系数矩阵和误差矩阵;最后通 过误差矩阵重建,得到红外小目标的位置。仿真及公开数据实验结果,证实了本文方法的有 效性。 相似文献
12.
基于超完备字典的图像稀疏表示是一种新的图像表示理论,利用超完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示.针对红外小目标检测问题,提出了一种基于图像稀疏表示的检测方法,该方法采用二维高斯模型生成样本图像,继而构造超完备目标字典,然后依次提取测试图像的图像子块并计算其在超完备字典中的表示系数,背... 相似文献
13.
高光谱遥感影像具有高的空间分辨率和连续的光谱信息,在目标探测领域具有独特的优势。基于高光谱影像的目标探测技术是遥感理论与应用的重要领域之一。本文从统计学中的相关系数的概念出发,提出了基于约束最大相关系数的高光谱影像目标探测算法。利用高光谱影像的线性混合模型,在真实图像中添加目标光谱,获得不同含量的亚像素目标及大目标,利用实验室高光谱成像仪对大目标进行推扫成像获取真实大目标高光谱影像。对仿真图像与真实图像进行约束能量最小化算子和约束最大相关系数算子进行对比,实验结果表明,基于约束最大相关系数的高光谱影像目标探测算法在探测大目标中具有更稳健的探测性能。 相似文献
14.
Gaze prediction is a significant approach for processing a large amount of incoming visual information of videos. Recent gaze prediction algorithms often employ sparse models with the assumption that every superpixel in the video frames can be represented as linear combinations of a few salient superpixels. However, they are not actuated enough because of the insufficient knowledge that video signals contain a non-negative request. Hence, we develop a novel gaze prediction based on an inverse sparse coding framework with a determinant sparse measure. By introducing this sparse measure, the solutions are non-negative and sparser than conventional sparse constraints. However, the proposed optimization problem becomes nonconvex, which is difficult to solve. To efficiently address the corresponding nonconvex optimization problem, we propose a novel algorithm based on the difference in convex function programming, which can yield the global solutions. Experimental results indicate the improved accuracy of the proposed approach compared with state-of-the-art algorithms. 相似文献
15.
现代战场作战环境复杂,智能化、网络化的干扰机是雷达探测的主要威胁。对于从副瓣进来的干扰,利用阵面空域自由度可以较容易地抑制干扰。但对于从主瓣方向进来的干扰,传统的反干扰方法失效,不能有效抑制干扰。干扰环境下,目标信噪比(SNR)较低,如果降低门限检测会增加很多虚警点迹。针对主瓣噪声干扰场景下小目标检测问题,提出了基于稀疏表示的检测技术,利用了目标可以稀疏表示,而噪声不能被稀疏表示的特性,达到了抑制噪声,降低虚警的效果。仿真实验验证了该方法的有效性。 相似文献
16.
基于3维SPIHT编码的超光谱图像压缩 总被引:3,自引:0,他引:3
提出一种针对超光谱图像压缩的3维SPIHT编码算法.通过对超光谱图像进行3维小波变换,同时去除像素数据间的空间冗余和谱间冗余.针对变换后得到的小波系数,构造一种3维空间方向树结构,并用经3维扩展后的SPIHT算法(3D SPIHT算法)对小波系数进行量化编码.实验证明,基于3维小波变换的3维SPIHT编码算法在对超光谱图像压缩时,表现出了优良的率失真性能.并且算法复杂度适中,具有嵌入式特性. 相似文献
17.
18.
19.
高光谱图像存在高维度、带间相关性较高的特点,分类过程中也存在同谱异类的问题.为此,提出一种基于分层网络与局部约束的高光谱图像分类方法.该方法通过空谱信息训练分层深度网络,并与局部约束信息结合实现对高维数据的特征提取.同时,融合训练样本与测试样本的类内相似性,以提高分类的准确性.在2个高光谱数据集Indian Pines... 相似文献