首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-claret disjunctional protein (Ncd) is a minus end-directed microtubule motor required for normal spindle assembly and integrity during Drosophila oogenesis. We have pursued equilibrium binding experiments to examine the affinity of Ncd for microtubules in the presence of the ATP nonhydrolyzable analog 5'-adenylyl-beta, gamma-imidodiphosphate (AMP-PNP), ADP, or ADP + Pi using both dimeric (MC1) and monomeric (MC6) Ncd constructs expressed in Escherichia coli. Both MC1 and MC6 sediment with microtubules in the absence of added nucleotide as well as in the presence of either ADP or AMP-PNP. Yet, in the presence of ADP + Pi, there is a decrease in the affinity of both MC1 and MC6 for microtubules. The data for dimeric MC1 show that release of the dimer to the supernatant is sigmoidal with the apparent Kd(Pi) for the two phosphate sites at 23.3 and 1.9 mM, respectively. The results indicate that binding at the first phosphate site enhances binding at the second site, thus cooperatively stimulating release. Stopped-flow kinetics indicate that MgATP promotes dissociation of the Mt.MC1 complex at 14 s-1, yet AMP-PNP has no effect on the Mt.MC1 complex. These results are consistent with a model for the ATPase cycle in which ATP hydrolysis occurs on the microtubule followed by detachment as the Ncd.ADP.Pi intermediate.  相似文献   

2.
The Escherichia coli FOF1 ATP synthase uncoupling mutation, gammaM23K, was found to increase the energy of interaction between gamma and beta subunits, prevent the proper utilization of binding energy to drive catalysis, and block the enzyme in a Pi release mode. In this paper, the effects of this mutation on substrate binding in cooperative ATP synthesis are assessed. Activation of ATP synthesis by ADP and Pi was determined for the gammaM23K FOF1. The K0.5 for ADP was not affected, but K0.5 for Pi was approximately 7-fold higher even though the apparent Vmax was close to the wild-type level. Wild-type enzyme had a turnover number of 82 s-1 at pH 7.5 and 30 degrees C. During oxidative phosphorylation, the apparent dissociation constant (KI) for ATP was not affected and was 5-6 mM for both wild-type and gammaM23K enzymes. Thus, the apparent binding affinity for ATP in the presence of DeltamuH+ was lowered by 7 orders of magnitude from the affinity measured at the high-affinity catalytic site. Arrhenius analysis of ATP synthesis for the gammaM23K FOF1 revealed that, like those of ATP hydrolysis, the transition state DeltaH was much more positive and TDeltaS was much less negative, adding up to little change in DeltaG. These results suggested that ATP synthesis is inefficient because of an extra bond between gamma and beta subunits which must be broken to achieve the transition state. Analysis of the transition state structures using isokinetic plots demonstrate that ATP hydrolysis and synthesis utilize the same kinetic pathway. Incorporating this information into a model for rotational catalysis suggests that at saturating substrate concentrations, the rate-limiting step for hydrolysis and synthesis is the rotational power stroke where each of the beta subunits changes conformation and affinity for nucleotide.  相似文献   

3.
The interaction of myosin with actin, coupled with hydrolysis of ATP, is the molecular basis of muscle contraction. The head segment of myosin, called S1, contains the distinct binding sites for ATP and actin and is responsible for the ATPase activity. The myosin-catalyzed ATP hydrolysis consists of several intermediate steps and each step is accompanied by conformational changes in the S1 segment. The rate-limiting step of the ATP hydrolysis is the dissociation of the S1 x ADP x Pi complex which is accelerated by actin. The substitution of Pi with phosphate analogs (PA), such as vanadate, beryllium fluoride (BeFx) or aluminum fluoride (AlF4-), yields stable complexes which mimic the intermediates of the ATP hydrolysis. In this work, tertiary structure changes in S1 in the vicinity of aromatic residues was studied by comparing near-UV circular dichroism (CD) spectra from S1-nucleotide-phosphate analog complexes in the presence of Mg2+ and other cations. A significant difference between the MgATP and MgADP spectra indicated notable tertiary structural changes accompanying the M**ADP x Pi --> M*ADP transition. The spectra of the S1 x MgADP x BeFx and S1 x MgADP x AlF4- complexes resemble to those obtained upon addition of MgATPgammaS and MgATP to S1, and correspond to the M* x ATP and M** x ADP x Pi intermediates, respectively. We have found recently that the presence of divalent metal cations (Me2+) is essential for the formation of stable S1 x MeADP x PA complexes. Moreover, the nature of the metal cations strongly influences the stability of these complexes [Peyser, Y. M., et al. (1996) Biochemistry 35, 4409-4416]. In the present work we studied the effect of Mg2+, Mn2+, Ca2+, Ni2+, Co2+, and Fe2+ on the near-UV CD spectrum of the ATP, ADP, ADP x BeFx, and ADP x AlF4- containing S complexes. The CD spectra obtained with ADP, ATP ADP x BeFx and ADP x AlF4- were essentially identical in the presence of Co2+ and rather similar in the case of Ca2+, while they were partially different in other cases. An interesting correlation was found between actin activation and ATP versus ADP difference spectra in the presence of various metal ions. The distribution of the fractional concentration of the intermediates of ATP hydrolysis was estimated in the presence of each cation from the CD spectra with phosphate analogs. In the presence of Mg2+ the predominant intermediate is the M** x ADP x Pi state, which is in accordance with the kinetic studies. On the other hand with non-native cations the predominant intermediate is the M* x ADP state and the release of ADP is the rate limiting step in the myosin-catalyzed ATP hydrolysis. According to the results, the near-UV CD spectrum originating from aromatic residues in S1 not only can distinguish identifiable states in the ATP hydrolysis cycle but can also pinpoint to changes in the tertiary structure caused by complex formation with nucleotide or nucleotide analog and various divalent metal cations. These findings, that are correlative with actin activation, and thus with the power stroke, suggest new strategies for perturbing S1 structure in the continuous efforts directed toward the elucidation of the mechanism of muscle contraction.  相似文献   

4.
ATP hydrolysis by bacterial and eukaryotic MutS activities is required for their function in mismatch correction, and two different models for the role of ATP in MutS function have been proposed. In the translocation model, based on study of bacterial MutS, ATP binding reduces affinity of the protein for a mismatch and activates secondary DNA binding sites that are subsequently used for movement of the protein along the helix contour in a reaction dependent on nucleotide hydrolysis (Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P., and Griffith, J. D. (1997) EMBO J. 16, 4467-4476). The molecular switch model, based on study of human MutSalpha, invokes mismatch recognition by the MutSalpha.ADP complex. After recruitment of downstream repair activities to the MutSalpha.mismatch complex, ATP binding results in release of MutSalpha from the heteroduplex (Gradia, S., Acharya, S., and Fishel, R.(1997) Cell 91, 995-1005). To further clarify the function of ATP binding and hydrolysis in human MutSalpha action, we evaluated the effects of ATP, ADP, and nonhydrolyzable ATP analogs on the lifetime of protein.DNA complexes. All of these nucleotides were found to increase the rate of dissociation of MutSalpha from oligonucleotide heteroduplexes. These experiments also showed that ADP is not required for mismatch recognition by MutSalpha, but that the nucleotide alters the dynamics of formation and dissociation of specific complexes. Analysis of the mechanism of ATP-promoted dissociation of MutSalpha from a 200-base pair heteroduplex demonstrated that dissociation occurs at DNA ends in a reaction dependent on ATP hydrolysis, implying that release from this molecule involves movement of the protein along the helix contour as predicted for a translocation mechanism. In order to reconcile the relatively large rate of movement of MutS homologs along the helix with their modest rate of ATP hydrolysis, we propose a novel mechanism for protein translocation along DNA that supports directional movement over long distances with minimal energy input.  相似文献   

5.
The yeast mitochondrial GrpE homologue, Mge1, assists matrix Hsp70 in both protein translocation across the mitochondrial membranes and subsequent protein folding. We expressed mtHsp70 and Mge1 in Escherichia coli and analyzed their function in the ATP hydrolysis cycle. Mge1 stimulates ATP hydrolysis by mtHsp70 about twofold. Addition of inorganic phosphate inhibits ATP hydrolysis by preventing ADP release from mtHsp70. Mge1 has no direct effect on gamma-phosphate release from mtHsp70, yet indirectly relieves the phosphate inhibition by stimulating ADP release. We conclude that Mge1 promotes the ATPase cycle of mtHsp70 by increasing the rate of ADP release. ATP then rapidly binds to mtHsp70 such that the total amount of mtHsp70-bound nucleotide is not changed by Mge1.  相似文献   

6.
The fluorescent GTP analogues 3'-O-(N-methylanthraniloyl)-2'-deoxyguanosine 5'-(beta, gamma-imidotriphosphate) (mGMPPNP) and 3'-O-(N-methylanthraniloyl)-2'-deoxy-GTP (mGTP) were used to demonstrate that an enzyme isomerization precedes and rate-limits beta,gamma-bond cleavage in the catalytic cycle of the ATP sulfurylase-GTPase, from E. coli K-12. The binding of mGMPPNP to the E.AMP.PPi complex of ATP sulfurylase is biphasic, indicating that an isomerization occurs in the binding reaction. The isomerization mechanism was assigned based on the results of the enzyme concentration dependence of the observed rate constants, kobs, for both phases of the binding reaction, and sequential-mixing, nucleotide release experiments. The isomerization occurs after, and is driven by, the addition of mGMPPNP. Values were determined for each of the rate constants associated with the two-step kinetic model used in the interpretation of the results. A comparison of the enzyme concentration dependence of kobs for the hydrolysis and binding reactions reveals that the rate constants for the corresponding steps of these two reactions are extremely similar. The virtually identical rate constants for isomerization and beta, gamma-bond scission strongly suggest that isomerization rate-limits bond breaking. The implications of these finding for GTPase/target interactions and the mechanism of energetic linkage in the ATP sulfurylase system are discussed.  相似文献   

7.
Pre-steady-state kinetic analyses of the catalytic subunit of cAMP-dependent protein kinase showed that the rate constant for phosphoryl transfer is fast and either the release of one or both of the products or a conformational change controls turnover [Grant, B., & Adams, J. A. (1996) Biochemistry 35, 2022-2029]. To determine which step or steps control turnover in the wild-type enzyme, we used a catalytic trapping technique to measure directly the dissociation rate constant for ADP. The phosphorylation of two peptide substrates, LRRASLG and GRTGRRNSI, was monitored using a rapid quench flow technique under conditions where saturating concentrations of ADP were preequilibrated with the enzyme before excess ATP and one of the substrates were added to trap the free enzyme and to start the phosphorylation reaction. Under ADP preequilibration conditions, no 'burst' phase was observed, and although the rate of linear, steady-state turnover was unaffected, the net production of phosphopeptide lagged behind the non-preequilibrated control. This phenomenon occurs due to the slow release of the product, and kinetic modeling suggests that this effect can be explained if the dissociation rate constant for ADP is 24 s-1 and solely limits turnover (kcat = 23 s-1) for the phosphorylation of LRRASLG. Using GRTGRRNSI, the dissociation rate constant for ADP is 35 s-1 and limits turnover (kcat = 29 s-1) if the reaction is initiated by the addition of enzyme. Under preequilibration conditions with either ATP or GRTGRRNSI, turnover is approximately 50% lower, suggesting that ADP release may partially control this parameter. This preequilibration effect can be explained by slowly interconverting enzyme forms with specific peptide-induced turnover properties. These studies indicate that ADP release is an essential rate-limiting component for turnover but also suggests that other factors contribute subtly when the structure of the substrate is altered.  相似文献   

8.
Previous studies on the motor enzyme kinesin suggesting that the enzyme molecule tightly binds to a microtubule by only one of its two mechanochemical head domains were performed with multiple kinesin molecules on each microtubule, raising the possibility that interactions between adjacent bound molecules may interfere with the binding of the second head. To characterize the microtubule-bound state of isolated single kinesin molecules, we have measured the rates of nucleotide-induced dissociation of the complex between microtubules and bead-labeled single molecules of the dimeric kinesin derivative K448-BIO using novel single-molecule kinetic methods. Complex dissociation by <2 microM ADP displays an apparent second-order rate constant of 1.2 x 10(4) M-1 s-1. The data suggest that only one of the two heads is bound to the microtubule in the absence of ATP, that binding of a single ADP to the complex is sufficient to induce dissociation, and that even lengthy exposure of kinesin to the microtubule fails to produce significant amounts of a two-head-bound state under the conditions used. The inhibitor adenylyl imidodiphosphate (AMP-PNP) induces stochastic pauses in the movement of bead-labeled enzyme molecules in 1 mM ATP. Exit from pauses occurs at 2 s-1 independent of AMP-PNP concentration. The same rate constant is obtained for dissociation of the transient kinesin-microtubule complexes formed in 1 mM ADP, 0.5 mM AMP-PNP, suggesting that release of a single AMP-PNP molecule from the enzyme is the common rate-limiting step of the two processes. The results are consistent with alternating-sites movement mechanisms in which two-head-bound states do not occur in the enzyme catalytic cycle until after ATP binding.  相似文献   

9.
10.
The conserved glycines in the glycine-rich loop (Leu-Gly50-Thr-Gly52-Ser-Phe-Gly55-Arg-Val) of the catalytic (C) subunit of cAMP-dependent protein kinase were each mutated to Ser (G50S, G52S, and G55S). The effects of these mutations were assessed here using both steady-state and pre-steady-state kinetic methods. While G50S and G52S reduced the apparent affinity for ATP by approximately 10-fold, substitution at Gly55 had no effect on nucleotide binding. In contrast to ATP, only mutation at position 50 interfered with ADP binding. These three mutations lowered the rate of phosphoryl transfer by 7-300-fold. The combined data indicate that G50 and G52 are the most critical residues in the loop for catalysis, with replacement at position 52 being the most extreme owing to a larger decrease in the rate of phosphoryl transfer (29 vs 1.6 s-1 in contrast to 500 s-1 for wild-type C). Surprisingly, all three mutations lowered the affinity for Kemptide by approximately 10-fold, although none of the loop glycines makes direct contact with the substrate. The inability to correlate the rate constant for net product release with the dissociation constant for ADP implies that other steps may limit the decomposition of the ternary product complex. The observations that G52S (a) selectively affects ATP binding and (b) significantly lowers the rate of phosphoryl transfer without making direct contact with either the nucleotide or the peptide imply that this residue serves a structural role in the loop, most likely by positioning the backbone amide of Ser53 for contacting the gamma-phosphate of ATP. Energy-minimized models of the mutant proteins are consistent with the observed kinetic consequences of each mutation. The models predict that only mutation of Gly52 will interfere with the observed hydrogen bonding between the backbone and ATP.  相似文献   

11.
Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle.  相似文献   

12.
Nucleotide and actin binding properties of the truncated myosin head (S1dC) from Dictyostelium myosin II were studied in solution using rabbit skeletal myosin subfragment 1 as a reference material. S1dC and subfragment 1 had similar affinities for ADP analogues, epsilon ADP and TNP-ADP. The complexes of epsilon ADP and BeFx or AIF4- were less stable with S1dC than with subfragment 1. Stern-Volmer constants for acrylamide quenching of S1dC complexes with epsilon ADP, epsilon ADP.AIF4- and epsilon ADP.BeFx were 2.6, 2.9 and 2.2 M-1, respectively. The corresponding values for subfragment 1 were 2.6, 1.5 and 1.1 M-1. The environment of the nucleotide binding site was probed by using a hydrophobic fluorescent probe, PPBA. PPBA was a competitive inhibitor of S1dC Ca(2+)-ATPase (Ki = 1.6 microM). The binding of nucleotides to subfragment 1 enhanced PPBA fluorescence and caused blue shifts in the wavelength of its maximum emission in the order: ATP approximately ADP.AIF4- approximately ADP.BeFx > ATP gamma S > ADP > PPi. In the case of S1dC, the effects of different nucleotides were smaller and indistinguishable from each other. S1dC bound actin tighter than S1 (Kd = 7 nM and 60 nM, respectively). The actin activated MgATPase activity of S1dC varied between preparations, and the Vmax and K(m) values ranged between 3 and 7 s-1 and 60 and 190 microM, respectively. S1dC showed lower structural stability than S1 as revealed by their thermal inactivations at 35 degrees C. These results show that the nucleotide and actin binding of S1dC and subfragment 1 are similar but there are some differences in nucleotide and phosphate analogue-induced changes and the communication between the nucleotide and actin binding sites in these proteins.  相似文献   

13.
Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.  相似文献   

14.
The bacterial signal recognition particle (SRP) is an RNA-protein complex. In Escherichia coli, the particle consists of a 114 nt RNA, a 4.5S RNA, and a 48 kDa GTP-binding protein, Ffh. GDP-GTP exchange on, and GTP hydrolysis by, Ffh are thought to regulate SRP function in membrane targeting of translating ribosomes. In the present paper, we report the equilibrium and kinetic constants of guanine nucleotide binding to Ffh in different functional complexes. The association and dissociation rate constants of GTP/GDP binding to Ffh were measured using a fluorescent analogue of GTP/GDP, mant-GTP/GDP. For both nucleotides, association and dissociation rate constants were about 10(6) M-1 s-1 and 10 s-1, respectively. The equilibrium constants of nonmodified GTP and GDP binding to Ffh alone and in SRP, and in the complex with the ribosomes were measured by competition with mant-GDP. In all cases, the same 1-2 microM affinity for GTP and GDP was observed. Binding of both GTP and GDP to Ffh was independent of Mg2+ ions. The data suggest that, at conditions in vivo, (i) there will be rapid spontaneous GDP-GTP exchange, and (ii) the GTP-bound form of Ffh, or of SRP, will be predominant.  相似文献   

15.
Recent reports have shown that the binding of ATP to a 70-kDa molecular chaperone induces a rapid global conformational transition from a "high affinity" state to a "low affinity" state, where these states are defined by tight and weak binding to (poly)peptides, respectively. To complete the activity cycle, a chaperone molecule must ultimately return to the high affinity state. In this report, this return to the high affinity state was studied using a chemical cross-linking assay in conjunction with SDS-polyacrylamide gel electrophoresis. The basis for this assay is that in the absence of nucleotide or in the presence of ADP, conditions that stabilize the high affinity state, cross-linking of the Escherichia coli molecular chaperone DnaK yielded two monomeric forms, with apparent molecular masses of 70 kDa (77%) and 90 kDa (23%), whereas cross-linking yielded only the 70-kDa monomeric form in the presence of ATP. This ATP-dependent difference in cross-linking was used to follow the kinetics of the low affinity to high affinity transition under single turnover conditions. The rate of this transition (kobs = 3.4 (+/-0.6) x 10(-4) s-1 at 25 degrees C) is almost identical to the reported rate of ATP hydrolysis (khy = 2.7 (+/-0.7) x 10(-4) s-1 at 22 degrees C). These results are consistent with a two-step sequential reaction where rate-limiting ATP hydrolysis precedes the conformational change. Models for the formation of two cross-linked DnaK monomers in the absence of ATP are discussed.  相似文献   

16.
DnaK, the 70 kDa molecular chaperone of Escherichia coli, adopts a high-affinity state in the presence of ADP that tightly binds its target peptide, whereas replacement of ADP by ATP induces a structural switch to a low-affinity chaperone state that weakly binds its target. An approximately 15% decrease in tryptophan fluorescence of DnaK occurs in concert with this switch from the high- to low-affinity state. The reversibility of this structural transition in DnaK was investigated using rapid mixing and equilibrium fluorescence methods. The Cro peptide (MQERITLKDYAM) was used to mimic an unfolded substrate. When the Cro peptide is rapidly mixed with preformed low-affinity DnaK complexes (DnaK-ATP), a rapid increase (kobs = 3-30 s-1) in the tryptophan fluorescence of DnaK occurs. We suggest that the Cro peptide induces the transition of the low-affinity state of DnaK back to the high-affinity state, without ATP hydrolysis. The combined results in this report are consistent with the minimal mechanism ATP + EP if ATP-EP if ATP-E + P, where ATP binding (K1) induces a conformational change and concerted peptide release (koff), and peptide binding (kon) to the low-affinity state (ATP-E) induces the transition back to ATP-EP, a high-affinity state. At 25 degreesC, in the presence of the Cro peptide, values for K1, koff, and kon are 22 microM, 3.3 s-1, and 2. 4 x 10(4) M-1 s-1, respectively. Evidence for an equilibrium between closed and open forms of DnaK in the absence of ATP and peptide is also presented.  相似文献   

17.
The kinetics of Na+-dependent partial reactions of the Na+,K+-ATPase were investigated via the stopped-flow technique using the fluorescent labels RH421 and BIPM. After the enzyme is mixed with MgATP, both labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau1 approximately 180 s-1 (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3 --> E2P(Na+)3 + ADP). The rate of the phosphorylation reaction measured by the acid quenched-flow technique was 190 s-1 at 100 microM ATP, suggesting that phosphorylation controls the kinetics of the RH421 signal and that the conformational change is very fast (>/=600 s-1). The rate of the RH421 signal was optimal at pH 7.5. The Na+ concentration dependence of 1/tau1 showed half-saturation at a Na+ concentration of 8-10 mM with positive cooperativity involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high affinity ATP binding site determined from the ATP concentration dependence of 1/tau1 was 7.0 (+/-0.6) microM, while the apparent Kd for the low affinity site and the rate constant for the E2 to E1 conformational change evaluated in the absence of Mg2+ were 143 (+/-17) microM and 相似文献   

18.
The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.  相似文献   

19.
Two site-directed mutants of Escherichia coli DNA helicase II (UvrD) were constructed to examine the functional significance of motif VI in a superfamily I helicase. Threonine 604 and arginine 605, representing two of the most highly conserved residues in motif VI, were replaced with alanine, generating the mutant alleles uvrD-T604A and uvrD-R605A. Genetic complementation studies indicated that UvrD-T604A, but not UvrD-R605A, functioned in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. Both mutant enzymes were purified and single-stranded DNA (ssDNA)-stimulated ATP hydrolysis, duplex DNA unwinding, and ssDNA binding were studied in the steady-state and compared to wild-type UvrD. UvrD-T604A exhibited a serious defect in ssDNA binding in the absence of nucleotide. However, in the presence of a non-hydrolyzable ATP analog, DNA binding was only slightly compromised. Limited proteolysis experiments suggested that UvrD-T604A had a "looser" conformation and could not undergo conformational changes normally associated with ATP binding/hydrolysis and DNA binding. UvrD-R605A, on the other hand, exhibited nearly normal DNA binding but had a severe defect in ATP hydrolysis (kcat=0.063 s-1 compared to 162 s-1 for UvrD). UvrD-T604A exhibited a much less severe decrease in ATPase activity (kcat=8.8 s-1). The Km for ATP for both mutants was not significantly changed. The results suggest that residues within motif VI of helicase II are essential for multiple biochemical properties associated with the enzyme and that motif VI is potentially involved in conformational changes related to the coupling of ATPase and DNA binding activities.  相似文献   

20.
The mechanical behavior of skinned rabbit psoas muscle fiber contractions and in vitro motility of F-actin (Vf) have been examined using ATP, CTP, UTP, or their 2-deoxy forms (collectively designated as nucleotide triphosphates or NTPs) as contractile substrates. Measurements of actin-activated heavy meromyosin (HMM) NTPase, the rates of NTP binding to myosin and actomyosin, NTP-mediated acto-HMM dissociation, and NTP hydrolysis by acto-HMM were made for comparison to the mechanical results. The data suggest a very similar mechanism of acto-HMM NTP hydrolysis. Whereas all NTPs studied support force production and stiffness that vary by a factor 2 or less, the unloaded shortening velocity (Vu) of muscle fibers varies by almost 10-fold. 2-Deoxy ATP (dATP) was unique in that Vu was 30% greater than with ATP. Parallel behavior was observed between Vf and the steady-state maximum actin-activated HMM ATPase rate. Further comparisons suggest that the variation in force correlates with the rate and equilibrium constant for NTP cleavage; the variations in Vu or Vf are related to the rate of cross-bridge dissociation caused by NTP binding or to the rate(s) of product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号