首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Herbivore-induced plant volatiles can function as indirect defense signals that attract natural enemies of herbivores. Several parasitoids are known to exploit these plant-provided cues to locate their hosts. One such parasitoid is the generalist Cotesia marginiventris, which is, among others, attracted to maize volatiles induced by caterpillar damage. Maize plants can be induced to produce the same blend of attractive volatiles by treating them with regurgitant of Spodoptera species. We collected and analyzed the regurgitant-induced emissions of two plant species (cowpea and maize) and of eight Mexican maize varieties and found significant differences among their volatile emissions, both in terms of total quantity and the quality of the blends. In a Y-tube olfactometer, the odors of the same artificially induced plant species and Mexican varieties were offered in dual choice experiments to naïve mated females of C. marginiventris. Wasps preferred cowpea over maize odor and, in 3 of 12 combinations with the maize varieties, they showed a preference for the odors of one of the varieties. A comparison of the odor collection with results from the behavioral assays indicates that not only the quantity of the volatile emissions, but also the quality composition of the volatile blends is important for attraction of C. marginiventris. The results are discussed in the context of the possibility of breeding crop varieties that are particularly attractive to parasitoids.  相似文献   

2.
In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and α-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.  相似文献   

3.
The responses of the goldenrod leaf beetleTrirhabda canadensis to host and nonhost volatile odors were tested in a Y-tube olfactometer in the laboratory. Beetles preferred host to nonhost odors and were sensitive to concentrations of host odor. Beetles distinguished between host and nonhost volatiles of only one of the two nonhostSolidago species; host volatiles were preferred to all nonhost volatiles at the family and order levels. In other words, all nonhosts above the genus level had similar effects on beetle responses. Although the odors of most nonhosts were neutral (i.e., neither attractive nor repellent) to the beetles as tested against air, this neutrality disappeared if the odors of two or more nonhosts were added to the host odor and beetles were given a choice between this mixture and pure host odor. Given this choice, they strongly preferred pure host odor, which suggests that diversity of odors per se is unattractive to the beetles. Beetles walked rather than flew to locate their hosts in the field, and their movements suggest that they used olfactory cues to locate hosts.  相似文献   

4.
The responses of femaleAphidius ervi to odors from a host food plant (Vicia faba), host aphids (Acyrthosiphon pisum), nonhost aphids (Aphis fabae), and aphid-plant complexes were investigated in a specially designed wind tunnel and a Y-tube olfactometer. In single-target (no-choice) and two-target (dual-choice) experiments, plant volatiles played a crucial role in the host foraging behavior ofA. ervi. The odor from theA. pisum-plant complex elicited the strongest responses byA. ervi females, followed by the odor from plants previously damaged by the feeding ofA. pisum. There was a significantly weaker response to odor fromA. pisum in the absence of the plant and to undamaged plants. Similarly, mechanically damaged plants and plants infested with the nonhost aphidA. fabae did not elicit strong responses. A plant that had been damaged byA. pisum and subsequently washed with distilled water was as attractive as an unwashed, previously infested plant.Aphidius ervi probably overcomes the reliability-detectability problem by selectively responding to herbivore-induced, volatile, semiochemical cues emitted by the first trophic level and by distinguishing between the volatiles induced by host and nonhost aphids.  相似文献   

5.
The olfactory responses of the parasitoidAphidius nigripes Ashmead were investigated with a four-field airflow olfactometer. Female and male parasitoids did not respond to potato plants, the food plant of their host. However, females were strongly attracted by odors from a preferred host,Macrosiphum euphorbiae (Thomas), and also from less preferred hosts such asMyzus persicae (Sulzer) andAphis nasturtii Kalt. Moreover,A. nigripes females responded positively to odors from a nonhost aphid,Rhopalosiphum maidis Fitch. The honeydew produced by these four aphid species was also very attractive to females. Males did not respond to aphids or honeydew but were highly attracted by odors from conspecific female parasitoids.Contribution No. 394 from the Département de biologie, Université Laval.  相似文献   

6.
FemaleCotesia flavipes Cameron andCotesia sesamiae (Cameron) were attracted to odors in a Y-tube olfactometer from uninfested maize (Zea mays L.), sorghum [Sorghum bicolor (L.)], and napier grass (Pennisetum purpureum Schumach). In dual choice tests,Cotesia flavipes showed a preference for maize over sorghum, while maize and napier grass were equally attractive. In contrast,Cotesia sesamiae preferred volatiles from sorghum and napier grass over those from maize. The two parasitoids were significantly more attracted to maize infested with the stemborers,Chilo partellus (Swinhoe),Chilo orichalcociliellus Strand,Sesamia calamistis Hampson, andBusseola fusca (Fuller), than uninfested maize. In dual choice tests,Cotesia flavipes andCotesia sesamiae were unable to discriminate between odors from plants infested by the different species of stemborers.  相似文献   

7.
Apoanagyrus (Epidinocarsis) lopezi De Santis is an endoparasitoid used in the biological control of the cassava mealybug Phenacoccus manihoti Matile-Ferrero in Africa. The response of naive and mated females of A. lopezi to odors from cassava plant (var. Zanaga), parasitized or unparasitized mealybugs, and plant–mealybug host complexes with or without feeding hosts was investigated in a Y-tube olfactometer. Dual-choice tests revealed that mealybug-infested plants and mealybug-damaged plants were the major sources of volatiles that attract female parasitoids to the microhabitat of its hosts. The emission of volatile chemicals appears not to be limited to the infested plant part but to occur systemically throughout the plant. On their own, unparasitized mealybugs were more attractive than uninfested plants or parasitized mealybugs alone. Parasitization of P. manihoti by A. lopezi decreased the response of parasitoids to mealybugs or mealybug–plant complexes. Plants infested with unparasitized hosts attracted more female parasitoids than plants infested with parasitized mealybugs. These results indicate that, in the long-range host-searching process, females of A. lopezi respond mainly to mealybug-induced synomones, and specific host-derived cues play a minor role.  相似文献   

8.
Thirteen host-plant kairomone blends, including 28 compounds, were tested and showed moderate to high synergy with rhynchophorol. The blends plus rhynchophorol also attracted the related Dynamis borassi. Ethanol–ethyl acetate blends in various ratios showed moderate synergy. Two blends, including "characteristic coconut" odor molecules, were as efficient as sugarcane in synergizing rhynchophorol and field luring American Palm weevils (APWs). Preliminary olfactometer tests of natural host-plant volatiles demonstrated the role of fermentation in primary APW attraction. The synergists were chosen from a comparative study of the odors emitted by four plant materials attractive to the APW: sugarcane, coconut, Jacaratia digitata tree and Elaeis guineensis (Oil palm). The volatiles were isolated during 6 days of sequential trappings onto Supelpak-2 adsorbent. The highly volatile fraction of sugarcane volatiles was sampled by solid-phase microextraction (SPME). Odors were analyzed and identified by gas chromatography and mass spectrometry. Electroantennogram responses to the plant odors were recorded to help in screening for bioactivity. The odor compositions between plants prior to and during fermentation were compared using a principal component analysis (PCA) to determine common odor features of the plants and to design simplified blends for field activity screening. About 100 components were identified in the >4-carbon fraction of the odors, among which 65% were fermentation volatiles. Fermentation generated a strong increase in the amount and variety of the volatiles emitted. The palm materials emitted two- to threefold greater odor amounts than the other plants. The odors from each plant were distinct according to PCA, with few common abundant components: isopentanol, 2-methylbutanol, their acetates, acetoin, isobutyl acetate, 2,3-butanediol, and 2-phenylethanol. Ethanol and ethyl acetate accounted for 80–90% in the highly volatile fraction of sugarcane odors. Coconut odor was mainly characterized by phenol, guaiacol, 1,2-dimethoxybenzene, ethyl esters of tiglic and 3,3-dimethylacrylic acids, 2-hexanone, 2-nonanone; and, to a lesser extent, by 2-heptanone, menthone, -phellandrene, ethyl octanoate and decanoate, which were also present in other plants.  相似文献   

9.
Sources of Apple Odor Attractive to Adult Plum Curculios   总被引:2,自引:0,他引:2  
We evaluated olfactory attraction of overwintered plum curculio (PC) adults, Conotrachelus nenuphar, to volatiles from extracts of host and nonhost plant tissues in the laboratory using a still-air dual-choice bioassay system. In experiments evaluating four different solvents, hexane and water proved to be better than dichloromethane and methanol for extracting nonpolar and polar attractive compounds, respectively, from host McIntosh apple tissues. Significantly more PCs were attracted to volatiles from hexane extracts of host wild plum fruit at bloom, and host wild plum and McIntosh fruit at two weeks after bloom, than to volatiles from hexane extracts of nonhost honeysuckle fruit at either phenological stage. In every case, for hexane-extracted or water-extracted volatiles from McIntosh apple tissues (twigs, leaves, or fruit) at seven phenological stages of development (pink through five weeks after bloom), greatest numerical responses were recorded to volatiles from extracts made between bloom and two weeks after bloom. We conclude that source material used to identify volatile components of McIntosh apple odor attractive to PCs should be collected between bloom and two weeks after bloom.  相似文献   

10.
The relationship between host plant glucosinolate profile and feeding and growth of the Bertha armyworm,Mamestra configurata Walker was investigated using eight cultivated rape and mustard varieties. Mean larval weights of neonates reared on intact rosette-stage plants were significantly different on the different species in the orderBrassica juncea <Sinapis alba <B. napus <B. campestris. WhileB. juncea was least preferred,S. alba was significantly more attractive to neonate larvae in choice tests. Relative consumption and growth rates of fourth-instar larvae were also reduced onB. juncea foliage. Other differences were dependent on the plant growth stage. Neonate preference was not correlated to total glucosinolate levels, but rather to the concentrations of isothiocyanate-releasing glucosinolates. However, the relationship between consumption and glucosinolate levels was inconsistent. Relative growth rate was negatively correlated to total glucosinolate content for stage 3 and 4 foliage—mainly due to the concentration of isothiocyanatereleasing glucosinolates. The relative importance of isothiocyanate-releasing glucosinolates was verified by rearing neonates on meridic diets containing equimolar concentrations of sinigrin, its metabolite, allyl isothiocyanate, and indole-3-carbinol, metabolite of 3-indolylmethyl glucosinolate. Sinigrin and allyl isothiocyanate in the diet produced virtually identical negative weight vs. concentration regression lines. No such dose-response effect was observed with indole-3-carbinol. The data suggest that foliar isothiocyanate-releasing glucosinolates may provide some degree of plant protection from polyphagous insects.  相似文献   

11.
Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.  相似文献   

12.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

13.
Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass (Melinis minutiflora). In single-choice tests, females of C. sesamiae chose volatiles from infested and uninfested host plants and molasses grass over volatiles from the control (soil). In dual-choice tests, the wasp preferred volatiles from infested host plants to those from uninfested host plants. There was no discrimination between molasses grass volatiles and those of uninfested maize, uninfested sorghum, or infested maize. The wasp preferred sorghum volatiles over maize. Combining uninfested maize or sorghum with molasses grass did not make volatiles from the combination more attractive as compared to only uninfested host plants. Infested maize alone was as attractive as when combined with molasses grass. Infested sorghum was preferred over its combination with molasses grass. Local growth conditions of the molasses grasses influenced attractiveness to the parasitoids. Volatiles from Thika molasses grass were attractive, while those from Mbita molasses grass were not. Growing the Thika molasses grass in Mbita rendered it unattractive and vice versa with the Mbita molasses grass. This is a case of the same genotype expressing different phenotypes due to environmental factors.  相似文献   

14.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

15.
The female parasitic waspCotesia kariyai discriminated between the volatiles of corn leaves infested by younger host larvaePseudaletia separata (first to fourth instar) and uninfested leaves in a Y-tube olfactometer; the wasps were attracted to the infested leaves. In contrast, when corn plants were infested by the later stages (fifth and sixth instar) of the armyworm, the wasps did not distinguish between infested corn leaves and uninfested corn leaves in the olfactometer. Mechanically damaged leaves were no more attractive than undamaged leaves, and host larvae or their feces were not attractive to the parasitoid. Through chemical analysis, the herbivore-induced plant volatiles were identified in the headspace of infested corn leaves. The herbivore-induced volatiles (HIVs) constituted a larger proportion of the headspace of corn leaves infested by early instar armyworms than of corn leaves infested by late instar armyworms. Application of third-instar larval regurgitant onto artificially damaged sites of leaves resulted in emission of parasitoid attractants from the leaf, whereas leaves treated with sixth-instar regurgitant did not. The function of this herbivore-stage related specificity of herbivore-induced synomones is discussed in a tritrophic context.  相似文献   

16.
Identification of male cabbage looper sex pheromone attractive to females   总被引:1,自引:0,他引:1  
A multicomponent pheromone produced by male cabbage looper moths that is attractive to female moths in a flight tunnel bioassay was isolated and identified. Based on analyses of hairpencil extracts of male cabbage loopers and volatiles emitted by males, the pheromone has been identified as a blend consisting of (S)-(+)-linalool,p-cresol, andm-cresol. The chirality of the major component, (S)-(+)-linalool, is important for behavioral response of females. These pheromonal compounds were also identified as volatiles released by males when males were exposed to the principal pheromone component of female cabbage loopers, (Z)-7-dodecen-1-ol acetate. The amount of male pheromone released was increased significantly when males were exposed to a combination of (Z)-7-dodecen-1-ol acetate and the odor from cabbage. Neither linalool nor the cresols were detected in volatiles from cabbage or from males exposed to cabbage odor.  相似文献   

17.
Neonate fall armyworms [FAW; Spodoptera frugiperda (Smith)] often encounter conspecific herbivore damage as they disperse from an egg mass to an initial feeding site. We investigated the orientation responses of dispersing neonates to herbivore damage in cowpea seedlings, specifically examining whether neonate behaviors were affected by inceptin, the primary elicitor of FAW-induced defenses in cowpea leaves. We focused on responses to damage caused by conspecific first instars, as might occur during the dispersal of siblings from an egg mass. Inceptin contents of damaging first instar FAW were controlled through their diets, with leaf-fed FAW producing inceptins in their oral secretions, and root-fed or starved FAW lacking these elicitors. In a bioassay designed to evaluate neonate dispersal off a host plant, a higher percentage of neonates remained on herbivore-induced or inceptin-treated plants than on undamaged plants, mechanically damaged plants, freshly damaged plants, or on plants damaged by FAW lacking inceptins. Further investigations of neonate responses to plant odors with a four-arm olfactometer demonstrated that neonate attraction to odors from 4-h old FAW damage was strongly dependent on previous diet of the damaging larvae. Neonates were attracted to odors from 4-h old FAW damage over odors from undamaged plants or fresh FAW damage, provided that the damaging larvae had previously ingested leaf material. In a direct comparison of odors from induced plants, plants damaged by leaf-fed FAW were as attractive as plants treated with synthetic inceptin. GC-MS analysis confirmed that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was the major volatile induced by FAW herbivory. While both DMNT and undamaged plant odors were more attractive than air, neonates preferred DMNT-supplemented plant odors. These results suggest that neonate FAW exploit herbivore-induced plant volatiles as host plant location and recognition cues. The use of trade, firm, or corporation names in this publication (or page) is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.  相似文献   

18.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

19.
The origin of olfactory stimuli involved in the host microhabitat location inCotesia flavipes, a parasitoid of stem-borer larvae, was investigated in a Y-tube olfactometer. The response of femaleC. flavipes towards different components of the plant-host complex, consisting of a maize plant infested with two or more larvae of the stem borerChilo partellus, was tested in dualchoice tests. The concealed lifestyle of the stem-borer larvae did not limit the emission of volatiles attractive to a parasitoid. A major source of the attractive volatiles from the plant-host complex was the stem-borer-injured stem, including the frass produced by the feeding larvae. Moreover, the production of volatiles attractive to a parasitoid was not restricted to the infested stem part but occurs systemically throughout the plant. The uninfested leaves of a stem-borer-infested plant were found to emit volatiles that attract femaleC. flavipes. We further demonstrate that an exogenous elicitor of this systemic plant response is situated in the regurgitate of a stem-borer larva. When a minor amount of regurgitate is inoculated into the stem of an uninfested plant, the leaves of the treated plant emit volatiles that attract femaleC. flavipes.  相似文献   

20.
We determined that location of host (Cydia pomonella) eggs by Ascogaster quadridentata is mediated by kairomones, investigated potential sources of the kairomones and identified a blend of kairomones from the source that was attractive to A. quadridentata. In Y-tube olfactometer bioassays, female A. quadridentata were attracted to Porapak Q-collected volatiles from female C. pomonella scales and eggs, but not to C. pomonella sex pheromone. Scales of C. pomonella were also attractive to male A. quadridentata. Coupled gas chromatographic–electroantennographic detection analysis of scale volatile extracts revealed numerous compounds that elicited responses from male or female A. quadridentata antennae, including heptanal, octanal, nonanal, decanal, undecan-2-one, dodecanal, pentadecan-2-one, (Z)-6-pentadecen-2-one, (Z)-9-hexadecenal, (Z)-6-heptadecen-2-one, and 3,7,11-trimethyl-2E,6E,10-dodecatrien-1-ol acetate. A synthetic blend of these compounds at quantities and ratios equivalent to Porapak Q scale volatile extract was attractive to female A. quadridentata in a Y-tube olfactometer bioassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号