首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have reported new basic information on the ultrastructure of human metaphase chromosomes using both scanning and transmission electron microscopy. This includes the observation of a bipartite chromatid structure (BCS) for some metaphase chromatids, a "zipper-like" configuration (ZC) between chromatids that likely resulted from chromatin coiling, and a "brush-like" border (BB) that was observed primarily on chromosomes that were not exposed to colcemid. Now we have examined the effects of colcemid and several metals on the occurrence of the BCS, the ZC, and the BB. Although we do not as yet know the function of the zipper-like and bipartite chromatid configurations, we have found that colcemid clearly caused a significant increase in the occurrence of chromosomes with a BCS or ZC. We also have confirmed our original observation of increased occurrence of the BB on chromosomes not exposed to colcemid and finally, have shown that aluminum and other metals had some effect on the frequencies of the BCS, the ZC, and the BB with and without exposure to colcemid.  相似文献   

2.
A brush-like border apparently composed of fibers protruding from metaphase chromosomes of human lymphocytes was observed for the first time using transmission (TEM) and scanning electron microscopy (SEM). On the basis of size and sensitivity to colcemid, the fibers may be related to microtubules and spindle organization. The brush-like fibers were observed when chemically fixed metaphase chromosome spreads were placed on glass slides and maintained under "wet" conditions (not allowed to air dry after fixation for conventional cytogenetic protocols) until postfixation protocols for TEM and SEM were performed. The purpose of this study was to establish the occurrence of the brush-like fibers and to determine the effects of colcemid on these fibers.  相似文献   

3.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

4.
C-banding visualized by atomic force microscopy   总被引:2,自引:0,他引:2  
C-banding is a method used for studying chromosome rearrangements near centromeres and for investigating polymorphisms. In human chromosomes, the C-bands are located at the centromere of all the chromosomes and the distal long arm of the Y chromosome. In this study, we aimed to detect the structural changes in chromosomes during the stages of C-banding by atomic force microscopy. We observed crater-like structures in the chromosomes after 2xSSC (saline sodium citrate) treatment and measured the relative difference between the heights of chromatid and centromere of the chromosomes. Results showed that the relative difference was 3 nm in chromosomes 1, 9, 16, and Y, whereas in the other chromosomes this value was 11.6 nm. After Giemsa staining, the relative difference increased by a factor of 16 in chromosomes 1, 9, 16, and Y. The other chromosomes showed no such increase, which is in accordance with our suggestion that nonhiston proteins associated with DNA in constitutive heterochromatin can make the constitutive heterochromatin resistant to C-banding.  相似文献   

5.
A method for bacterial identification has been developed by means of studying the same histological sections through several types of microscopy. With this method, one section was processed and analyzed respectively for light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Sections of gingival biopsies were Gram stained and bacteria tentatively identified by LM. Photographs of the sections were taken and presketched transparent acetate sheets (PTAS) were made from the photos. The same section was later prepared for SEM, areas previously thought to contain bacteria were localized by placing the PTAS onto the SEM monitoring screen. The SEM specimens were subsequently processed for TEM, bacteria were located, and micrographs obtained. The results showed that out of ten diseased gingival biopsies observed under the LM, bacteria were found to be present in all the specimens and were identified as both Gram positive and Gram negative. By transferring the section from LM to SEM, the bacteria could be relocated and their morphotype (cocci, rods, etc.) clearly identified in most of the cases. Since cocci may resemble other biological granular structures under SEM, they require further analysis under TEM for additional positive identification. This study demonstrated that the method described here is a useful tool for assessing the presence and identifying bacteria within the gingival tissues.  相似文献   

6.
This paper describes the use of sputter coating to prepare detergent-extracted cytoskeletons for observation by scanning (SEM), scanning transmission (STEM), inverted contrast STEM, and transmission (TEM) electron microscopy. Sputtered coats of 1–2 nm of platinum or tungsten provide both an adequate secondary electron signal for SEM and good contrast for STEM and TEM. At the same time, the grain size of the coating is sufficiently fine to be just at (platinum) or below (tungsten) the limit of resolution for SEM and STEM. In TEM, the granular structure of platinum coats is resolved, and platinum decoration artifacts are observed on the surface of structures. The platinum is deposited as small islands with a periodic distribution that may reveal information about the underlying molecular structure. This method produces samples that are similar in appearance to replicas prepared by low-angle rotary shadowing with platinum and carbon. However, the sputter-coating method is easier to use; more widely available to investigators; and compatible with SEM, STEM, and TEM. It may also be combined with immunogold and other labeling methods. While TEM provides the highest resolution images of sputter-coated cytoskeletons, it also damages the specimens owing to heating in the beam. In SEM and STEM cytoskeletons are stable and the resolution is adequate to resolve individual microfilaments. The best single method for visualizing cytoskeletons is inverted contrast STEM, which images both the metal-coated cytoskeletal structures and electron-dense material within the nucleus and cytoplasm as white against a dark background. STEM and TEM were both suitable for visualizing colloidal gold particles in immunolabeled samples.  相似文献   

7.
Although structural information of mitotic chromosomes has been accumulated, little information is available for meiotic chromosome structures. Here, we applied atomic force microscopy (AFM) to investigate the ultrastructures of the silkworm, Bombyx mori, meiotic pachytene chromosome in its native state with nanometer scale resolution. Two levels of DNA folding were observed on the meiotic chromosome surface, 50-70 nm granules, which were considered to be 30 nm chromatin fibers, and spherical protrusions of 400-600 nm, which were considered to be chromomeres and arranged on the surface of the chromosome parallel to the chromosome longitudinal axis. These observations suggested that AFM study is an excellent approach for obtaining information concerning the silkworm pachytene chromosome higher order structure.  相似文献   

8.
Transmission electron microscopy (TEM) is an important analysis technique to visualize (bio)macromolecules and their assemblies, including collagen fibers. Many protocols for TEM sample preparation of collagen involve one or more washing steps to remove excess salts from the dispersion that could hamper analysis when dried on a TEM grid. Such protocols are not standardized and washing times as well as washing solvents vary from procedure to procedure, with each research group typically having their own protocol. Here, we investigate the influence of washing with water, ethanol, but also methanol and 2-propanol, for both mineralized and unmineralized collagen samples via a protocol based on centrifugation. Washing with water maintains the hydrated collagen structure and the characteristic banding pattern can be clearly observed. Conversely, washing with ethanol results in dehydration of the fibrils, often leading to aggregation of the fibers and a less obvious banding pattern, already within 1 min of ethanol exposure. As we show, this process is fully reversible. Similar observations were made for methanol and propanol. Based on these results, a standardized washing protocol for collagenous samples is proposed.  相似文献   

9.
Electron microscopy of squamous cell carcinoma of the head and neck   总被引:2,自引:0,他引:2  
Leek H  Albertsson M 《Scanning》2000,22(5):326-331
Squamous cell carcinoma of the head and neck carries a bad prognosis. In order to achieve cure, the most important thing to attain is local tumour control. The main therapy available is external radiotherapy, which can be supplemented when necessary, with interstitial radiotherapy, chemotherapy and surgery. In this paper we have evaluated specimens, taken before therapy, from 35 patients with squamous cell carcinoma of the head and neck. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were made. With SEM, the parameters analysed were the amount and appearance of microvilli, filaments, and blood vessels. From TEM, scoring was made of the filaments, desmosomes, nuclei, nucleoli, mitochondria, and blood vessels. Scoring of the samples showed a difference between the group with recurrent disease (n = 10, Group 1) and the group with local tumor control (n = 25, Group 2) in regard to both blood vessels and intracellular filaments. No differences of the nuclei, nucleoli, or the mitochondria were observed.  相似文献   

10.
Cross-linked dextran beads provide an excellent surface for tissue-cultured cell monolayers, and can be processed for transmission (TEM) and scanning (SEM) electron microscopy, as well as light microscopy (LM). Cells are grown to confluency on the surface of the microcarriers, where at any point aliquots can be removed and experimentally treated as desired (e.g. immunocytochemistry) providing a representative sample. Sample preparation for TEM follows standard procedures for any cell monolayer, but infiltration times must be at least doubled to allow penetration of the beads. The polymerized blocks can then be sectioned for TEM or LM with no additional steps required. SEM sample preparation involves attaching the fixed bead/cell suspension to a glass coverslip with poly-1-lysine, dehydration, critical point drying, and coating for conductivity. The fixed and dried sample can also be attached directly to the SEM stub as free beads and subsequently gold coated. These beads provide (1) an increased surface area of cells visible per area of thin section, (2) eliminates the careful orientation required for flat substrate methods of embedding, (3) decreases the amount of sample manipulation in the forms of re-embedding and gluing, and (4) decreases the amount of drying artifact seen as cracking in SEM monolayer preparations.  相似文献   

11.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

12.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

13.
A Sbarbati  V Fanos  P Bernardi  L Tatò 《Scanning》2001,23(6):376-378
Intravascular catheters carry a significant risk of becoming colonized with bacteria and fungi and are important risk factors of septicemia in premature neonates. The study was undertaken to evaluate whether scanning electron microscopy (SEM) examination of removed catheters can be useful in early diagnosis of plastic infection by Candida, providing information useful for initiation of an eventual therapy. The evolution of biofilms in 28 catheters (umbilical or central) implanted in 24 newborns for prematurity was studied by SEM and transmission electron microscopy (TEM). In 4 of 24 patients, SEM examination revealed the presence of Candida in form of yeast or hyphae. In one of these patients, TEM confirmed the presence of organisms. In each case, hemoculture and culture of the catheter itself confirmed the diagnosis. The study demonstrates that SEM can identify fungi in the biomaterials covering the catheter surface in a few hours, allowing an early diagnosis of plastic infection.  相似文献   

14.
A comparative study of atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging of the healthy human liver parenchyma was carried out to determine the similarities and the differences. In this study, we compared the fine hepatic structures as observed by SEM and AFM. Although AFM revealed such typical hepatic structures as bile canaliculi and hepatocytes, it also showed the location of the nucleus and chromatin granules in rough relief structure, which was not visible by SEM. By contrast, SEM visualized other structures, such as microvilli, the central vein, and collagenous fibers, none of which was visualized by AFM. For better orientation and confirmation of most of the structures imaged by SEM and AFM, Congo Red-stained specimens were also examined. Amyloid deposits in the Disse's spaces were shown especially clearly in these images. The differences between the SEM and AFM images reflected the characteristics of the detection systems and methods used for sample preparation. Our results reveal that more detailed information on hepatic morphology is obtained by exploiting the advantages of both SEM and AFM.  相似文献   

15.
The study aimed at finding an optimal combination of acid concentration and etching time when nitric acid is used as etchant for the study of the finer details of human dental enamel structure. Four hundred 2–3‐mm‐thick segments of facio‐lingually sectioned human third molar crowns were assigned to 20 groups with 20 specimens in each group, each group differing with respect to acid concentration (0.1, 1, 2.5, and 5%) and etching time (15, 30, 45, 90, and 180 s). After etching and preparation, specimens were observed in the scanning electron microscope (SEM). Surface roughness/topography increased with increasing acid concentration and increasing etching time, but not in a linear fashion; generally, prisms tended to go from flat‐surfaced to cone‐shaped and prism sheaths from fissure‐like to wedge‐shaped. Intragroup variations and intergroup similarities were considerable. The two major enamel factors determining the etch effect are crystal orientation and prism sheath properties. Other factors, such as distribution of porosities and crystal quality, also contribute probably. Slight to moderate topography is best for observing the finer enamel structure, for example, etching with concentrations in the range 0.1–1% and with etching times in the range 15–90 s, the stronger the acid, the shorter the time. The depth effect of nitric acid is judged to be relatively small. Considerable variations in expression of prism cross‐striations were observed. SEM observations of acid‐etched enamel in carefully selected planes are a powerful method for the study of enamel structure, bearing in mind the artifactual aspects of the observed surface.  相似文献   

16.
The domain structures of Zn3B7O13Cl, Zn3B7O13Br and Zn3B7O13I boracite single crystals were studied by means of polarized light in conjunction with electron microscopy. Single crystals of the three compositions were grown by chemical transport reactions in closed quartz ampoules, at a temperature of 900 °C and were examined by polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For both PLM and SEM, the same as‐grown samples were used without having to resort to metallization of the crystal faces. For TEM the single crystals were crushed and mounted on holey carbon films. Comparative electron microscope images were useful for revealing the domain structure of these ferroelectric/ferroelastic materials previously observed between the crossed polars of an optical microscope. X‐ray diffraction analysis of the pulverized crystals was performed for this triad of halogen boracites containing zinc as a common metal.  相似文献   

17.
Until recently high resolution TEM was the only imaging mode capable of probing the atomic lattice structure of crystals composing tooth enamel. Studies designed to determine the polyhedral shape of normal enamel crystals and initiation of carious lesions in enamel crystals were hampered and limited by interpretation of two-dimensional TEM images from thin section and freeze fracture replica specimens lacking depth of field. The newly developed SE-I signal mode for SEM (SE-I/SE-II ratio) can produce images of enamel crystals approaching beam diameter dimensions (0.7–2.0 nm), rivaling the resolution of the TEM technique and generating topographic contrasts for three dimensional imaging at very high magnification (≈?1,000,000 X). Ultrathin chromium (Cr) films generate enriched high resolution SE-I contrasts of enamel crystal surfaces and when imaged using an immersion lens field emission SEM operated at high voltage (20–30 KeV) produce unsurpassed topographic contrasts. Since the grain size of Cr is below the resolution of any SEM and is ultrathin (≈?1 nm), then SE-I images can provide a more accurate representation of enamel crystal structure than TEM methodologies. Our SE-I SEM observations of normal human enamel crystals reveal fractured spicules which contain angled flat surfaces delineated by a prominent 2 nm wide SE-I edge brightness contrast. Although microscopic observations often show crystals which are hexagonal in cross-section, in both SEM and TEM many other growth habits, including rectangular or irregular crystals (30–40 nm in width) which contain “notches,” are also observed. More detailed morphological studies are therefore required to determine the most likely habit planes and their relevance to the function of the enamel crystals. The granular appearing fine structural contrast imposed onto <100> lattice planes of sectioned enamel in TEM micrographs is also resolved with topographic contrasts in SE-I micrographs. These granules probably represent one or both of the enamel protein classes.  相似文献   

18.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

19.
A combined scanning electron (SEM) and transmission electron microscopy (TEM) investigation was undertaken to gain insight into the complex structural pattern of the atrial compartment and the gas exchange tissue of parabronchial units in quail and town pigeons. The aim was also to depict the changes taking place in the parabronchial unit in the late prehatching and early posthatching periods in quail. The standard SEM and TEM investigation was carried out in 13 mature quail and 8 town pigeons. The developmental study involved embryonic quail (Days 15, 16, 17), newly hatched quail, quail 24 h after hatching, and quail aged 2, 10, 19, and 25 days (3 individuals per group). The luminal relief of the parabronchus is formed by anastomosing interatrial septa delineating the atrial pits, which are thinner and shallower in pigeons. The atrial bottom opens in mature individuals into 3-6 infundibula. The extracellular material represented by trilaminar substance, which does not appear until hatching, veils the surface relief of the parabronchial epithelium, which is consequently hardly accessible to three-dimensional visualization. Only in town pigeons with fewer discontinuous layers of extracellular material was it possible to visualize the surface of the atrial epithelium, that is, of the granular and squamous atrial cells. The SEM analysis has convincingly shown the intricate spatial organization of atria, infundibula, and air and blood capillaries of the gas exchange tissue. The retinacula, that is, parallelly arranged processes of squamous respiratory cells bridging the air-capillary lumina, were evidenced by SEM and TEM. The complex structure of the avian parabronchus has been successfully demonstrated in the present SEM and TEM study.  相似文献   

20.
Morphometric characterization of nanoparticles is crucial to determine their biological effects and to obtain a formulation pattern. Determining the best technique requires knowledge of the particles being analyzed, the intended application of the particles, and the limitations of the techniques being considered. The aim of this article was to present transmission (TEM) and scanning (SEM) electron microscopy protocols for the analysis of two different nanostructures, namely polymeric nanoemulsion and poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles, and to compare these results with conventional dynamic light scattering (DLS) measurements. The mean hydrodynamic diameter, the polydispersity index, and zeta potential of the nanostructures of polymeric nanoemulsion were 370.5 ± 0.8 nm, 0.133 ± 0.01, and ?36.1 ± 0.15 mV, respectively, and for PLGA nanoparticles were 246.79 ± 5.03 nm, 0.096 ± 0.025, and ?4.94 ± 0.86 mV, respectively. TEM analysis of polymeric nanoemulsion revealed a mean diameter of 374 ± 117 nm. SEM analysis showed a mean diameter of 368 ± 69 nm prior to gold coating and 448 ± 70 nm after gold coating. PLGA nanoparticles had a diameter of 131 ± 41.18 nm in TEM and 193 ± 101 nm in SEM. Morphologically, in TEM analysis, the polymeric nanoemulsions were spherical, with variable electron density, very few showing an electron‐dense core and others an electron‐dense surface. PLGA nanoparticles were round, with an electron‐lucent core and electron‐dense surface. In SEM, polymeric nanoemulsions were also spherical with a rough surface, and PLGA nanoparticles were round with a smooth surface. The results show that the “gold standards” for morphometric characterization of polymeric nanoemulsion and PLGA nanoparticles were, respectively, SEM without gold coating and TEM with negative staining. Microsc. Res. Tech. 77:691–696, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号