首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

2.
The receptor binding and biochemical effects of the putative dopamine (DA) partial agonist CI-1007 ([R(+)-1,2,3,6-tetrahydro-4-phenyl- 1-[(3-phenyl-3-cyclohexen-1-yl)methyl]pyridine] maleate) and potential antipsychotic were evaluated with a variety of biochemical methods. In receptor binding studies, CI-1007 bound to rat striatal DA receptors exhibiting a Ki of 3 nM as assessed by inhibition of [3H]N-propylnorapomorphine binding. CI-1007 also exhibited high affinity for cloned human D2L (Ki = 25.5 nM) and D3 (Ki = 16.6 nM) receptors with less affinity for D4.2 receptors (Ki = 90.9 nM). The affinity for serotonin-1A (5-HT-1A), alpha-2 adrenergic and 5-HT-2 receptors was moderate (submicromolar range) and slight or negligible for alpha-1, DA D1 and various other receptors. Unlike dopamine, the inhibition of [3H]spiperone binding was monophasic for CI-1007 and only slightly affected by the addition of Gpp-(NH)p. In vitro CI-1007 antagonized the forskolin-induced increases in cyclic AMP levels in GH4C1 cells expressing the human D2L receptor, having an intrinsic activity of 53% of that seen with the full agonist quinpirole. In vivo CI-1007 antagonized the gamma-butyrolactone (GBL)-induced accumulation of L-3,4-dihydroxyphenylalanine in striatum and mesolimbic regions of rat brain, causing a maximal 64% reversal in striatum, consistent with a partial agonist profile. In microdialysis studies it decreased DA overflow in both striatum and nucleus accumbens, indicating decreased release of DA. CI-1007 also reduced brain DA synthesis (DOPA accumulation), metabolism (DOPAC and HVA) and utilization (after tyrosine hydroxylase inhibition with alpha-methyl-p-tyrosine). CI-1007 did not affect striatal acetylcholine levels indicating lack of potent postsynaptic DA actions. CI-1007 seemed to be selective for DA neurons as it did not alter rat brain norepinephrine (NE) synthesis in the NE-enriched brainstem or NE utilization in the mesolimbic region. In addition, it did not affect in general 5-HT synthesis and metabolism in striatum and mesolimbic regions. These neurochemical results demonstrate that CI-1007 is a selective potent brain dopamine partial agonist with limited agonist activity at postsynaptic DA receptors.  相似文献   

3.
The dopamine (DA) D3 receptor antagonist PD 58491 [3-[4-[1-[4-[2-[4-(3-diethylaminopropoxy)phenyl]benzoimidazol++ +-1-yl-butyl]-1H-benzoimidazol-2-yl]phenoxy]propyl]diethylamine] bound with high affinity and selectivity to recombinant human DA D3 versus D2L and D4.2 receptors transfected into Chinese hamster ovary cells: Ki values of 19.5 nM versus 2,362 and >3,000 nM, respectively. In contrast, the putative DA D3 receptor antagonist (+)-AJ76 displayed low affinity and selectivity for D3 versus D2L and D4.2 receptors (91 nM vs. 253 and 193 nM, respectively). In vitro, PD 58491 (1 nM-1 microM) exhibited D3 receptor antagonist activity, reversing the quinpirole (10 nM)-induced stimulation of [3H]thymidine uptake in D3 CHOpro-5 cells, but did not have any significant intrinsic activity by itself in this assay. PD 58491 did not decrease the gamma-butyrolactone-induced increase in DA synthesis (L-3,4-dihydroxyphenylalanine accumulation) in rat striatum, indicating that the compound possessed no in vivo DA D2/D3 receptor agonist action at DA autoreceptors. PD 58491 (3-30 mg/kg, i.p.) generally did not alter DA or serotonin synthesis in either the striatum or mesolimbic region of rat brain. The D3-preferring agonist PD 128907 decreased DA synthesis in striatum and mesolimbic regions, and this effect was attenuated by pretreatment with PD 58491. These findings support the hypothesis that DA D3 autoreceptors may in part modulate the synthesis and release of DA in striatum and mesolimbic regions.  相似文献   

4.
Deprenyl is the only selective monoamine oxidase B (MAO-B) inhibitor that is in clinical use for the treatment of Parkinson's disease. Our previous studies showed that chronic treatment of rats with low (MAO-B selective) doses of deprenyl inhibited dopamine (DA) re-uptake and enhanced DA release in the striatum. These changes could affect DA synthesis rate by activation of negative feedback loops. Chronic deprenyl treatment has also been suggested to cause down-regulation of release-modulating DA receptors. The effects of chronic and acute treatment with deprenyl on ex vivo striatal tyrosine hydroxylase activity were therefore studied, by determination of steady-state tissue level of DOPA following administration of NSD-1015 (100 mg/kg i.p.). In addition, we assessed changes in the in vivo sensitivity of dopaminergic receptors from the reduction in DOPA extracellular level after systemic apomorphine administration (2.5 mg/kg s.c.), following elevation of microdialysate DOPA by systemic or local aromatic amino acid decarboxylase inhibition with NSD-1015. Chronic treatment with deprenyl (0.25 mg/kg s.c. daily for 21 days) caused a significant reduction in tyrosine hydroxylase activity to 60% of control, with no change in the apomorphine-induced reduction of microdialysate DOPA and DOPAC. The reduction in tyrosine hydroxylase activity is compatible with our previous results showing an increase in striatal DA extracellular level following chronic treatment with deprenyl. The increased extracellular striatal DA level could reduce tyrosine hydroxylase activity through activation of a negative feedback loop, by activation of either presynaptic or postsynaptic DA receptors.  相似文献   

5.
152255 (E-1,1'-(2-butene-1,4-diyl)bis[2-[4-[3-(1-piperidinyl)propoxy]-phe nyl]-1H-benzimidazole]) exhibited high affinity (Ki = 12.7 nM) for human dopamine (DA) D3 receptors expressed in CHO K1 cells but not for DA D2L receptors (Ki = 565 nM), DA D42 or DA D1 receptors (Ki > 3 microM) and a number of other neurotransmitter receptors. Affinity for human muscarinic receptors was seen in vitro but no functional muscarinic agonist and/or antagonist action was observed in vivo. Antagonist activity at DA D3 receptors was demonstrated by blockade of quinpirole-stimulated [3H]-thymidine uptake in D3 transfected cells, an effect that was 28-fold more potent than in D2-transfected cells. Unlike classical DA D2 antagonists, PD 152255 did not increase rat brain DA synthesis and it increased locomotion in habituated rats. However, like antipsychotics, PD 152255 reduced locomotor activity in mice and reduced spontaneous and amphetamine-stimulated locomotion in nonhabituated rats. These results demonstrate that PD 152255 is a DA D3 antagonist that may have antipsychotic activity.  相似文献   

6.
Rats receive melatonin (MEL) (476 +/- 6.5 microg/kg/day) via their drinking water for 2 weeks. At the end of this period, the density of D2 dopamine (DA) receptors and their affinity for [3H]-YM-09151-2 are measured in the striatum. MEL treatment increases the apparent affinity (decreases the Kd) of D2 DA receptors for [3H]YM-09151-2 by 48%, while it does not significantly alter the density (Bmax). These findings indicate that the affinity of D2 DA receptors in the striatum is influenced by exposure to MEL. The possible implications of these results are discussed.  相似文献   

7.
The kappa-opioid agonist U-50,488 increases the locomotor activity of preweanling rats. The authors attempted to determine whether this effect was modulated by dopamine (DA) system functioning. Surprisingly, U-50,488's locomotor activating effects were attenuated by both the DA receptor antagonist flupenthixol and the DA receptor agonist R(-)-propylnorapomorphine (NPA). In order to determine those brain areas stimulated by U-50,488, Fos immunoreactivity was assessed in 17- and 80-day-old rats. U-50,488 not only enhanced the locomotor activity of the younger rats, but it also enhanced Fos expression in various brain areas, including the nucleus accumbens and medial striatum. NPA blocked U-50,488-induced Fos expression in the latter region. When considered together, these results indicate that U-50,488 does not increase locomotion by stimulating a DA mechanism. Instead, either agonizing or antagonizing DA receptors is sufficient to disrupt U-50,488's locomotor activating effects in the preweanling rat.  相似文献   

8.
Spontaneous [3H]dopamine ([3H]DA) overflow was measured from striatal slices in the presence of different glutamate (Glu) receptor agonists such as N-methyl-D-aspartate (NMDA), kainate (KA) and quisqualate (QA) and their corresponding antagonists, Dizocilpine maleate (MK-801), D-gamma-glutamyl-aminomethanesulfonic acid (GAMS) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively. [3H]DA uptake and release in the presence of L-Arginine (L-Arg) and NG-nitro-arginine (L-N-Arg), an inhibitor of nitric oxide (NO) synthesis were also evaluated. L-N-Arg alone or combined with L-Arg significantly reduced [3H]DA uptake at 10 and 100 microM from 33% to 44% from striatal slices. Whereas, in brain synaptosomal fractions L-Arg induced a biphasic effect on that [3H]DA uptake in a dose dependent manner, and L-N-Arg showed an absolute inhibition in 80-90% of this [3H]DA uptake at 1-500 microM. The amino acids, lysine, valine and histidine (100 microM) had a little effect inhibitory on [3H]DA uptake from synaptosomal fractions. Glu agonists, NMDA (10 microM) and KA (10 microM) importantly increased the spontaneous [3H]DA overflow, which was blocked by MK-801 (10 microM) and GAMS (10 microM), respectively. QA had no effect on [3H]DA release. L-Arg (10-200 microM) potentiated the spontaneous [3H]DA overflow in a dose dependent fashion from striatal slices, being reverted by 10 microM L-N-Arg alone or in combination with all other compounds; whereas, lysine, histidine and valine did not modify that spontaneous [3H]DA overflow. Results support the hypothesis related to the participation of NO on DA transport possibly synthesized at the dopaminergic (DAergic) terminals in the striatum; also that L-Arg concentration may determine alternative mechanisms to regulate the DAergic activity at the striatum.  相似文献   

9.
The aziridinium ion of ethylcholine (AF64A), a cholinergic neurotoxin, was injected into the right striatum of a rat. The unilateral injection of 10 nmol AF64A reduced the activity of choline acetyltransferase (CAT) and the tissue content of acetylcholine (ACh) in the striatum. The striatal contents of dopamine (DA), norepinephrine (NE), 5-hydroxyindoleacetic acid (5-HIAA) and gamma-aminobutyric acid (GABA) were unchanged. These results suggest that the cholinospecificity in the striatal lesion was induced by the 10 nmol dose of AF64A. The number of N-methyl-D-aspartic acid (NMDA) receptors in the striatum treated with 10 nmol AF64A was determined by a specific binding assay using [3H](+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a selective ligand for NMDA receptors. The number of the NMDA receptors decreased significantly in the injected area. On the other hand, in a microdialysis using normal rats, the perfusion of 50 microM NMDA into the striatum increased ACh release. The perfusion of 100 microM MK801 which is the specific and non-competitive NMDA receptor antagonist, decreased the basal levels of ACh release and blocked NMDA-elicited ACh release. Taken together, the present results strongly suggest that a population of NMDA receptors exists on cholinergic interneurons within the striatum, and it directly regulates ACh release.  相似文献   

10.
The purpose of the present study was to characterize pharmacologically dopamine D1 receptor-mediated inhibition of tuberoinfundibular dopamine neurons in males rats, and to determine if inhibitory dopamine D1 receptors oppose stimulatory dopamine D2 receptors and account for the inability of mixed dopamine receptor agonists to alter the activity of these neurons. Tuberoinfundibular dopamine neuronal activity was estimated by measuring the concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence, the region of the hypothalamus containing terminals of these neurons. Administration of the dopamine D1 receptor agonist (+/-)-1 phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF38393) decreased median eminence DOPAC and increased plasma prolactin concentrations, whereas administration of the dopamine D1 receptor antagonist ((-)-trans,6,7,7a,8,9,13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H -benzo[d]naphtho-[2,1 b]azepine (SCH39166) increased median eminence DOPAC concentrations but had not effect on plasma prolactin. The inhibitory effect of SKF38393 on median eminence DOPAC concentrations was blocked by SCH39166. These results demonstrate that acute activation of dopamine D1 receptors inhibits the activity of tuberoinfundibular dopamine neurons and thereby increases prolactin secretion, and that under basal conditions dopamine D1 receptor-mediated inhibition of tuberoinfundibular dopamine neurons is tonically active. Administration of the dopamine D2 receptor agonist (5aR-trans)-5,5a,6,7,8,9,9a,10-octahydro-6-propyl-pyridol[2, 3-g]quinazolin-2-amine (quinelorane) increased median eminence DOPAC concentrations, and SKF38393 caused a dose-dependent reversal of this effect. Administration of the mixed dopamine D1/D2 receptor agonist R(-)-10,11-dihydroxy-apomorphine (apomorphine) had no effect per se, but blocked quinelorane-induced increases in DOPAC concentrations in the median eminence. These results reveal that concurrent activation of dopamine D1 and D2 receptors nullifies the actions of each of these receptors on tuberoinfundibular dopamine neurons, which likely accounts for the lack of an acute effect of mixed dopamine D1/D2 receptor agonists on these hypothalamic dopamine neurons.  相似文献   

11.
We intended to determine whether the effect of neurotensin (NT) on K+ and electrically evoked [3H]dopamine (DA) release from rat and guinea-pig striatal slices involved different mechanisms and/or receptors. In the two species, NT and three NT agonists were found to exhibit different relative potencies to enhance K+- and electrically-evoked [3H]DA release. NT(1-13) increased [3H]DA release with EC50 values in the nanomolar range and Emax values in the range of 100% of control. NT(8-13) and Eisai hexapeptide were both as active as NT(1-13) under K+ depolarization, but did not exceed 40% of the NT(1-13) effect under electrical depolarization. In rats, when [3H]DA release was stimulated with two successive K+ depolarizations, in the presence of NT(1-13), the NT effect during the second exposure to K+ was drastically decreased, suggesting that the NT receptor was desensitized. The desensitization process was essentially observed on Emax values, EC50 values being weakly affected. Similar results were obtained in guinea pig. In contrast, with two electrical depolarizations or with two different depolarizations (K+ followed by electrical), the NT effect during the second depolarization was not significantly affected. Concerning NT antagonists, SR 48692 antagonized with IC50 values in the nanomolar range the NT(1-13) stimulated K+-evoked [3H]DA release but did not affect, up to 10(-6) M, the NT(1-13) enhancement of electrically stimulated [3H]DA release. On the contrary, SR 142948A antagonized the NT(1-13) effect on K+- and electrically-evoked [3H]DA release. In conclusion, these results suggest the possible existence of potentially distinct neurotensin receptors differentially involved in the control exerted by NT on DA release under KCl vs electrical depolarization.  相似文献   

12.
The effects of dopamine (DA) and 5-hydroxytryptamine (5-HT) autoreceptor agents on electrically induced [3H]DA and [3H]5-HT release from superfused slices of striatum, nucleus accumbens and ventral mesencephalon (VM) containing A9 and A10 neurons were investigated in rats made tolerant to the stimulatory effect of cocaine on locomotor behavior by a 14-day continuous infusion of cocaine (29 mg/kg/day) by s.c. implanted osmotic minipumps followed by a 7-day drug-free period. In VM, electrically induced [3H]DA was increased, the ability of pergolide to inhibit this release was abolished, but the ability of sulpiride to facilitate the release was potentiated, implicating a higher concentration of synaptic DA modifying the responsiveness of somatodendritic D2 autoreceptors to D2 agents. Both electrically induced [3H]5-HT release from VM and the stimulatory effect of in vitro cocaine on this release were enhanced whereas the effects of both 5-methoxytryptamine and methiothepin were attenuated, indicating that subsensitivity of 5-HT autoreceptors developed in DA cell body regions. In striatum and nucleus accumbens, no significant changes were observed in [3H]DA and [3H]5-HT release, except for a modest reduction in the effects of both pergolide and sulpiride on electrically induced [3H]DA release from striatum. These results emphasize the importance of pretreatment-induced changes in DA cell body regions, rather than terminal areas, under the present conditions. The observed increase in DA autoinhibitory tone and subsensitivity of 5-HT release-regulating autoreceptors in the VM may contribute to the locomotor tolerance upon cocaine challenge after continuous cocaine.  相似文献   

13.
The involvement of the dopaminergic (DA) systems in the control of limbic kindled seizures is ill defined. The effects of kindling on DA activity may have been overlooked in the past, because of its subtle unilateral occurrence and/or the variance of the endogenous imbalance of DA activity in normal animals. In the present study rats were screened for their endogenous DA imbalance using amphetamine-induced rotational behaviour. Electrical or sham kindling was applied in the hemisphere with the higher endogenous DA activity. Sections of the bilateral prefrontal cortex and dorsal and ventral striatum were dissected either 2 hours or 21 days after the final seizure and the electrically stimulated release of [3H]DA and [14C]acetylcholine (ACh) determined. Release was also measured in the presence of quinpirole or sulpiride to assess the activity of pre- and postsynaptic DA D2-receptors. Long-term effects of kindling consisted of facilitation of ACh release in the ventral striatum contralateral to the kindled amygdala and bilateral depression of DA release in the prefrontal cortex. Kindling therefore produced area specific changes in neurotransmitter systems giving rise to increased pro-convulsive cholinergic activity in the ventral striatum and decreased anti-convulsive dopaminergic activity in the prefrontal cortex.  相似文献   

14.
S 16924 showed a pattern of interaction at multiple (>20) native, rodent and cloned, human (h) monoaminergic receptors similar to that of clozapine and different to that of haloperidol. Notably, like clozapine, the affinity of S 16924 for hD2 and hD3 receptors was modest, and it showed 5-fold higher affinity for hD4 receptors. At each of these sites, using a [35S]GTPgammaS binding procedure, S 16924, clozapine and haloperidol behaved as antagonists. In distinction to haloperidol, S 16924 shared the marked affinity of clozapine for h5-HT2A and h5-HT2C receptors. However, an important difference to clozapine (and haloperidol) was the high affinity of S 16924 for h5-HT1A receptors. At these sites, using a [35S]GTPgammaS binding model, both S 16924 and clozapine behaved as partial agonists, whereas haloperidol was inactive. In vivo, the agonist properties of S 16924 at 5-HT1A autoreceptors were revealed by its ability to potently inhibit the firing of raphe-localized serotoninergic neurones, an action reversed by the selective 5-HT1A receptor antagonist, WAY 100,635. In contrast, clozapine and haloperidol only weakly inhibited raphe firing, and their actions were resistant to WAY 100,635. Similarly, S 16924 more potently inhibited striatal turnover of 5-HT than either clozapine or haloperidol. Reflecting its modest affinity for D2 (and D3) autoreceptors, S 16924 only weakly blocked the inhibitory influence of the dopaminergic agonist, apomorphine, upon the firing rate of ventrotegmental area-localized dopaminergic neurones. Further, S 16924 only weakly increased striatal, mesolimbic and mesocortical turnover of dopamine (DA). Clozapine was, similarly, weakly active in these models, whereas haloperidol, in line with its higher affinity at D2 (and D3) receptors, was potently active. In the frontal cortex (FCX) of freely moving rats, S 16924 dose-dependently reduced dialysate levels of 5-HT, whereas those of DA and NAD were dose-dependently increased in the same samples. In contrast, although S 16924 also suppressed 5-HT levels in the striatum and nucleus accumbens, DA levels therein were unaffected. Clozapine mimicked this selective increase in DA levels in the FCX as compared to striatum and accumbens. In contrast, haloperidol modestly increased DA levels in the FCX, striatum and accumbens to the same extent. In distinction to S 16924, clozapine and haloperidol exerted little influence upon 5-HT levels. Finally, the influence of S 16924 upon FCX levels of 5-HT, DA (and NAD) was attenuated by WAY 100,635. In conclusion, S 16924 possesses a profile of interaction at multiple monoaminergic receptors comparable to that of clozapine and distinct to that of haloperidol. In addition, S 16924 is a potent, partial agonist at 5-HT1A receptors. Correspondingly, acute administration of S 16924 decreases cerebral serotoninergic transmission and selectively reinforces frontocortical as compared to subcortical dopaminergic transmission. In line with these actions, S 16924 shows a distinctive profile of activity in functional (behavioral) models of potential antipsychotic activity (companion paper).  相似文献   

15.
Lobeline is currently being developed as a substitution therapy for tobacco smoking cessation. Activation of CNS dopamine (DA) systems results in the reinforcing properties of nicotine. The present study compared the effects of lobeline and nicotine on rat striatum. Both lobeline and nicotine evoked [3H]overflow from striatal slices superfused in the presence of pargyline and nomifensine in the buffer. Marked DA depletion (42-67%) and a concomitant 2-fold increase in dihydroxyphenylacetic acid (DOPAC) in slices superfused with high concentrations (30-100 microM) of lobeline were observed. The effect of nicotine (10 microM) was inhibited in a concentration-dependent manner by mecamylamine (1-100 microM). However, lobeline (0.1-100 microM)-evoked [3H]overflow was calcium-independent, and was not antagonized by mecamylamine (1-100 microM), suggesting a mechanism of action other than stimulation of nicotinic receptors. Lobeline inhibited [3H]DA uptake into synaptosomes (IC50 = 80 +/- 12 microM) and vesicles (IC50 = 0.88 +/- 0.001 microM), whereas nicotine (< or =100 microM) did not inhibit synaptosomal or vesicular [3H]DA uptake. In the absence of pargyline and nomifensine in the buffer, endogenous DA was detected in superfusate only in those slices exposed to the highest concentration (100 microM) of lobeline. However, endogenous DOPAC concentration was increased in a concentration-dependent manner, indicating that lobeline exposure resulted in increased cytosolic DA which was rapidly metabolized to DOPAC. Under these conditions, lobeline (10-100 microM) also significantly depleted (66-85%) DA content; however, no change in DOPAC content was observed. The results suggest that, unlike nicotine, lobeline increases DA release by potent inhibition of DA uptake into synaptic vesicles, and a subsequent alteration in presynaptic DA storage.  相似文献   

16.
The effects of triadimefon (TDF) were examined in male Sprague-Dawley rats. In this study, the acute administration of TDF (100 mg/kg) was found to significantly increase locomotor activity and induce stereotyped behavior. Acute administration of TDF was also found to significantly increase dopamine (DA) and homovanillic acid (HVA) levels while the dihydroxyphenylacetic acid (DOPAC) level remained unchanged in both the nucleus accumbens (NA) and striatal (ST) tissues when compared to control. Furthermore, DOPAC:DA ratios were significantly reduced in both brain regions suggesting an increase in DA turn overrate. On the other hand, in animals receiving repeated TDF administration, only the HVA level was significantly increased in both the ST and NA. TDF neither competed for binding to D2, D3 or D4 DA receptors nor altered the Kd or the Bmax of [3H] SCH 23390 and [3H] spiperone recognition sites associated with striatal D1 and D2 receptors, respectively. Meanwhile, TDF competed with [3H] GBR 12935 for binding to DA transporter sites with strong affinity, but repeated treatment with TDF had no sustained or cumulative effect on the DA transporter system. These results clearly show that acute TDF-induced behavioral effects may not be via binding to DA receptors, but through the interaction with DA transporter binding sites. Also, TDF does not appear to produce cumulative effects in the parameters evaluated.  相似文献   

17.
The novel benzoindane S 18126 possessed > 100-fold higher affinity at cloned, human (h) D4 (Ki = 2.4 nM) vs. hD2 (738 nM), hD3 (2840 nM), hD1 (> 3000 nM) and hD5 (> 3000 nM) receptors and about 50 other sites, except sigma1 receptors (1.6 nM). L 745,870 similarly showed selectivity for hD4 (2.5 nM) vs. hD2 (905 nM) and hD3 (> 3000 nM) receptors. In contrast, raclopride displayed low affinity at hD4 (> 3000 nM) vs. hD2 (1.1 nM) and hD3 receptors (1.4 nM). Stimulation of [35S]-GTPgammaS binding at hD4 receptors by dopamine (DA) was blocked by S 18126 and L 745,870 with Kb values of 2.2 and 1.0 nM, respectively, whereas raclopride (> 1000 nM) was inactive. In contrast, raclopride inhibited stimulation of [35S]-GTPgammaS binding at hD2 sites by DA with a Kb of 1.4 nM, whereas S 18126 (> 1000 nM) and L 745,870 (> 1000 nM) were inactive. As concerns presynaptic dopaminergic receptors, raclopride (0.01-0.05 mg/kg s.c. ) markedly enhanced DA synthesis in mesocortical, mesolimbic and nigrostriatal dopaminergic pathways. In contrast, even high doses (2. 5-40.0 mg/kg s.c.) of S 18126 and L 745,870 were only weakly active. Similarly, raclopride (0.016 mg/kg i.v.) abolished inhibition of the firing rate of ventrotegmental dopaminergic neurons by apomorphine, whereas even high doses (0.5 mg/kg i.v.) of S 18126 and L 745,870 were only weakly active. As regards postsynaptic dopaminergic receptors, raclopride potently (0.01-0.3 mg/kg s.c.) reduced rotation elicited by quinpirole in rats with unilateral lesions of the substantia nigra, antagonized induction of hypothermia by PD 128, 907, blocked amphetamine-induced hyperlocomotion and was effective in six further models of potential antipsychotic activity. In contrast, S 18126 and L 745,870 were only weakly active in these models (5.0-> 40.0 mg/kg s.c.). In six models of extrapyramidal and motor symptoms, such as induction of catalepsy, raclopride was likewise potently active (0.01-2.0 mg/kg s.c.) whereas S 18126 and L 745,870 were only weakly active (10.0-80.0 mg/kg s.c.). In freely moving rats, raclopride (0.16 mg/kg s.c.) increased levels of DA by + 55% in dialysates of the frontal cortex. However, it also increased levels of DA in the accumbens and striatum by 70% and 75%, respectively. In contrast to raclopride, at a dose of 0.16 mg/kg s.c. , neither S 18126 nor L 745,870 modified frontal cortex levels of DA. However, at a high dose (40.0 mg/kg s.c.), S 18126 increased dialysate levels of DA (+ 85%) and noradrenaline (+ 100%), but not serotonin (+ 10%), in frontal cortex without affecting DA levels in accumbens (+ 10%) and striatum (+ 10%). In conclusion, S 18126 and L 745,870 behave as potent and selective antagonists of cloned, hD4 vs. other dopaminergic receptor types in vitro. However, their in vivo effects at high doses probably reflect residual antagonist actions at D2 (or D3) receptors. Selective blockade of D4 receptors was thus associated neither with a modification of dopaminergic transmission nor with antipsychotic (antiproductive) or extrapyramidal properties. The functional effects of selective D4 receptor blockade remain to be established.  相似文献   

18.
The binding of the D2-like agonists, (+)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin (7-OH-DPAT) and [3H]pramipexole (2-amino-4,5,6-tetrahydro-6-propylaminobenzthiazole; MIRAPEX) were determined in membranes from adult male Sprague-Dawley and Fischer-344 rats. Saturation analysis, which optimized binding to D3 receptors, revealed 3-6 fold differences in Bmax values between the two radioligands with no change in affinity. [3H](+)7-OH-DPAT labeled 41.4+/-4.1 to 61.8+/-3.0 fmol/mg protein in nucleus accumbens and striatal homogenates, yet [3H]pramipexole labeled only 7.0+/-1.2 to 18.9+/-5.3 fmol/mg protein. Regional differences with both radioligands were observed in Fischer-344 rats; the striatum exhibited a 52%-69% greater density of sites in comparison to the nucleus accumbens. These data suggest that D3 receptor density can vary significantly between animal strains depending on the radioligand used, and [3H]pramipexole identifies a different ratio of sites in the striatum and nucleus accumbens compared to [3H](+)7-OH-DPAT.  相似文献   

19.
The effect of streptozotocin (STZ)-induced diabetes and a combination of chronic treatment with haloperidol (HPD) on dopamine (DA)D2, serotonin (5-HT) 5-HT1A and 5-HT2A receptors was investigated in rat brain. Rats were randomly assigned to one of four groups: vehicle-vehicle, STZ-vehicle, vehicle-HPD, and STZ-HPD groups. Four weeks after single administration of STZ (65 mg/kg IV) or vehicle (citrate buffer), rats received depot HPD (4 mg/kg IM) or vehicle (sesame oil) once a week for 4 weeks. Sixteen days after the last injection of HPD or vehicle, rats were sacrificed, and the density of binding sites was determined using [3H]spiperone as ligand in the striatum (D2),[3H]8-hydroxy-2-(di-n-propyl)-aminotetraline in the hippocampus (5-HT1A), and [3H]ketanserin in the frontal cortex (5-HT2A). The density of D2 receptors was significantly increased in the vehicle-HPD compared to vehicle-vehicle controls. However, striatal D2 receptor density of the STZ-HPD and the STZ-vehicle were not significantly different from the vehicle-vehicle group. A significant increase in cortical 5-HT2A receptor density was observed only in the group of STZ-vehicle. Treatment with STZ, HPD, or the combination thereof, did not affect the density of 5-HT1A receptors. The affinity constants for D2, 5-HT1A, and 5-HT2A receptors were not affected by any treatment. These results suggest that diabetic state may affect brain serotonergic activity via an increase in the density of 5-HT2A receptors. This may indicate an increased vulnerability to major depression in patients with diabetes. The lack of an effect of the combined chronic treatment with STZ and HPD on the D2 receptor density may correspond to the increased risk to develop tardive dyskinesia in patients with diabetes.  相似文献   

20.
Caffeine has been reported to induce contralateral rotational behaviour in rats bearing a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway. In order to define the role of dopamine receptors in the mediation of this behaviour, we have evaluated the influence of previous exposure to a dopamine receptor agonist and the importance of the time elapsed from the 6-hydroxydopamine lesion on the rotational behaviour induced by caffeine. Separate groups of rats lesioned with 6-hydroxydopamine 2 weeks previously were exposed to four administrations of the D1/D2 receptor agonist apomorphine (0.3 mg/kg s.c.) (primed) or vehicle (drug-naive). Three days later, all rats received caffeine (30 mg/kg s.c.). Drug-naive 6-hydroxydopamine-lesioned rats did not rotate in response to caffeine, while rats primed with apomorphine rotate contralaterally in response to caffeine. When apomorphine priming was paired to the same environment (hemispherical bowls) where rats received caffeine, rotational behaviour was significantly higher than that obtained in rats primed in an unpaired environment (cylinders). Repeated priming with the D2/D3 receptor agonist quinpirole (0.2 mg/kg s.c.) induced a totally context-dependent contralateral rotation in response to caffeine, while caffeine contralateral rotation was not dependent from the context after repeated priming with the D1 agonist SKF 38393 [1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol hydrochloride, 3 mg/kg s.c.]. Caffeine-mediated contralateral rotation was also evaluated in rats lesioned with 6-hydroxydopamine 12 weeks previously and exposed to four administrations of apomorphine or vehicle. As for rats repeatedly exposed to vehicle or apomorphine 2 weeks after 6-hydroxydopamine lesioning, caffeine failed to induce contralateral rotation in drug-naive rats, while it did induce a partially context-dependent contralateral rotation in apomorphine-primed rats. Different from rats receiving apomorphine priming 2 weeks after 6-hydroxydopamine lesioning, in 12 week-lesioned rats, caffeine also induced contralateral rotation after one priming with apomorphine (0.3 mg/kg s.c.), a condition which fails to induce context-dependent rotation. Administration of selective antagonists of A1 (8-cyclopentyl-1,3-dipropylxanthine), (DPCPX) or A2A (5-amino-2-(2-furyl)-7-(3-phenylpropyl)-pyrazolo[4,3-e]-1 ,2,4-triazolo[5c]pirimidine), (SCH 58261) adenosine receptors failed to induce contralateral rotation either alone or in combination in 12 week-6-hydroxydopamine-lesioned rats repeatedly primed with apomorphine. All together, the results indicate that: (i) caffeine does not induce any contralateral rotation in drug-naive 6-hydroxydopamine-lesioned rats; (ii) priming with a dopamine agonist enables caffeine to induce contralateral rotation, this rotation is, however, context independent only after priming with a selective D1 agonist; (iii) contralateral rotation in response to caffeine is dependent on the time from the 6-hydroxydopamine lesion; (iv) blockade of A1 and A2A adenosine receptors with selective antagonists does not induce contralateral rotational behaviour in 6-hydroxydopamine-lesioned rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号