首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

2.
Influence of biodiesel on engine combustion and emission characteristics   总被引:1,自引:0,他引:1  
This paper discusses the influence of biodiesel on the engine combustion characteristics. The considered fuel is neat biodiesel from rapeseed oil. The considered engine is a bus diesel engine with injection M system. The engine characteristics are obtained by experiments and numerical simulation. The results obtained with biodiesel are compared to those obtained with mineral diesel under various operating regimes. In this way, the influences of biodiesel usage on the injection pressure, injection timing, ignition delay, in-cylinder gas pressure and temperature, heat release rate, exhaust gas temperatures, harmful emissions, specific fuel consumption, and on engine power are analyzed. Furthermore, the relationships among fuel properties, injection and combustion characteristics, harmful emissions, and other engine performance are determined. Special attention is given to possible explanations of higher NOx emission in spite of lower in-cylinder gas temperature.  相似文献   

3.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

4.
The high viscosity of fish oil leads to problem in pumping and spray characteristics. The inefficient mixing of fish oil with air leads to incomplete combustion. The best way to use fish oil as fuel in compression ignition (CI) engines is to convert it into biodiesel. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. Combustion tests for methyl ester of fish oil and its blends with diesel fuel were performed in a kirloskar H394 DI diesel engine, to evaluate fish biodiesel as an alternative fuel for diesel engine, at constant speed of 1500 rpm under variable load conditions. The tests showed no major deviations in diesel engine's combustion as well as no significant changes in the engine performance and reduction of main noxious emissions with the exception on NOx. Overall fish biodiesel showed good combustion properties and environmental benefits.  相似文献   

5.
In this study, the exhaust emissions of an unmodified diesel engine fueled with methyl ester of waste frying palm-oil (biodiesel) and its blends with petroleum based diesel fuel (PBDF) were investigated at the full load-variable speed condition. The relationships between the fuel properties and the air–fuel equivalence ratio, fuel line pressure, start of injection (SOI) timing, and ignition delay were also discussed to explain their effects on the emissions. The obtained test results were compared with the reference values which were determined by using PBDF. The results showed that when biodiesel was used in the test engine, the fuel line pressure increased while air–fuel equivalence ratio and ignition delay decreased. These behaviors affected the combustion phenomena of biodiesel which caused to reduction 57% in carbon monoxide (CO) emission, about 40% in unburned hydrocarbon (HC) emission and about 23% in smoke opacity when compared with PBDF. However, NOx and CO2 emissions of the biodiesel have showed different behaviors in terms of the engine speed.  相似文献   

6.
《Applied Thermal Engineering》2007,27(11-12):2095-2103
Combustion and NOx emissions from a dimethyl ether (DME) fuelled compression ignition engine were investigated. The test engine used consisted of an unmodified two-cylinder direct injection four-stroke air cooled type. The injection timing and injector opening pressure were left unaltered from their diesel fuelling settings. Analysis of the fuel line pressure shows that due to the compressibility of DME the rate of pressure rise was lower, resulting in injection occurring later when compared to diesel injection. The maximum combustion chamber pressure was found to be higher in the case of diesel fuelling. In terms of energy release it was found that with DME this occurs later than in the case of diesel fuelling with the larger proportion occurring just after top dead centre. A comparison of NOx emissions revealed that, at all loads tested, these were higher in the case of DME fuelling and decreased steadily with increasing speed. At the higher speeds however, the levels of NOx monitored were noted to be less than those of their diesel counterpart. Some of the factors influencing the promotion of NOx emissions with DME fuelling are discussed and analysed.  相似文献   

7.
In order to verify and solve the problem of NOx and PM emissions, it is necessary to directly observe the internal combustion chamber of a diesel engine. Many studies have been performed in recent years to verify the macroscopic and microscopic behavior of the injected fuel spray because observing it is not easy due to the difficulties of the experiment. Researchers have investigated the spray characteristics for various diesel injector nozzles over a wide range of temperatures and pressure, but there is lack of evaluation for the spray characteristics for biodiesel. At a time when rapid rise of fuel prices and depleting hydrocarbon resources of the world have forced us to look for alternative fuels biodiesel produced by transesterification of non-edible vegetable oils is promising to be an important additive/substitute to petro diesel. Biodiesel being an oxygenated and sulfur-free fuel leads to more complete combustion and lower emissions. But, the energy content or net calorific value of biodiesel is less than that of diesel fuel; also it has higher viscosity and density, than diesel fuel. A considerable improvement in these properties can be obtained by mixing diesel and biodiesel and then using the blends. Biodiesel and biodiesel/petro diesel blends, with their higher lubricity levels, are increasingly being utilized as an alternative. Present paper analyzed the correlation of injection parameters that will affect the spray characteristics of biodiesel. Observations for analyzing the effect of injection parameters on spray cone angle, break up length and fuel penetration were made. Finally the performance and emissions tests were studied. Atomization and vaporization of fuel are greatly influenced by viscosity and density of fuel and these properties are temperature dependent. Thus fuel inlet temperature plays a very important role in fuel atomization process. At higher temperature viscosity of fuel decreases which enhances the atomization of biofuels.  相似文献   

8.
《Energy》2006,31(14):2665-2676
This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI). The use of fuel injection before the top center (TC) of an exhaust stroke and the negative valve overlap (NVO) to form the homogeneous mixture achieves low NOx and smoke emissions HCCI. Internal and external EGR are combined to control the combustion. Internal exhaust gas recirculation (IEGR) benefits to form a homogeneous mixture and reduces smoke emission further, but lower the high load limits of HCCI. Cooled external EGR can delay the start of combustion (SOC) effectively, which is very useful for high cetane fuel (diesel) HCCI because these fuels can easily self-ignited, making the SOC earlier. External EGR can avoid the knock combustion of HCCI at high load, which means it can expand the high load limit. HCCI maintains low smoke emission at various EGR rates and various loads compared with a conventional diesel engine because there are no fuel-rich volumes in the cylinder.  相似文献   

9.
二甲醚发动机燃烧特性的试验与数值模拟研究   总被引:6,自引:0,他引:6  
在一台直喷式压燃发动机上开展了二甲醚燃烧与排放特性的试验与数值模拟研究。测量了二甲醚在高压燃油泵内的泄漏量及其与发动机转速之间的定量关系,并就发动机分别燃用二甲醚和柴油的运转性能进行了对比试验研究,结果表明,发动机燃用二甲醚要比燃用柴油具有更好的性能与排放水平;另从二甲醚低温着火的化学反应机理人手,开展了其自燃着火过程的数值模拟研究,进而建立了计及温度、压力和燃空当量比因素的DME滞燃期数据库;通过将该数据库与发动机循环模拟程序相耦合,对DME发动机的运转性能进行了变参数预测分析,预测结果与试验结果吻合较好。  相似文献   

10.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted.  相似文献   

11.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

12.
The objective of this paper was to study the effects of the injection pressure and injection timing on the combustion and emission characteristics in a single-cylinder common-rail direct injection (CRDI) diesel engine fueled with waste cooking oil (WCO) biodiesel and commercial diesel fuel. The fuel property including fatty acid composition for the biodiesel were measured and compared with those of the conventional diesel fuel. The engine tests were conducted at two injection pressures (80 and 160 MPa) and different injection timings from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) under two different engine loads. The results showed that the indicated specific fuel consumption (ISFC) with respect to the injection timings of the biodiesel was higher than that of the diesel fuel under all experimental conditions. The peak cylinder pressure and the peak heat release rate of the biodiesel were slightly lower, while the ignition delay was slightly longer under all operating conditions. In terms of emissions, the biodiesel had benefits in reduction of smoke, carbon monoxide (CO), hydrocarbon (HC) emissions especially with high fuel injection pressure. The nitrogen oxide (NOx) emissions of the biodiesel were relatively higher than those of the diesel under all experimental conditions.  相似文献   

13.
While diesel engines are arguably superior to any other power-production device for the transportation sector in terms of efficiency, torque, and overall driveability, they suffer from inferior performance in terms of noise, NOx and particulate emissions. The majority of particulate originates with soot particles which are formed in fuel-rich regions of burning diesel jets. Over the past two decades, our understanding of the formation process of soot in diesel combustion has transformed from inferences based on exhaust measurements and laboratory flames to direct in-cylinder observations that have led to a transformation in diesel engine combustion. In-cylinder measurements show the diesel spray to produce a jet which forms a lifted, partially premixed, turbulent diffusion flame. Soot formation has been found to be strongly dependent on air entrainment in the lifted portion of the jet as well as by oxygen in the fuel and to a lesser extent the composition and structure of hydrocarbons in the fuel. Soot surviving the combustion process and exiting in the exhaust is dominated by soot from fuel-rich pockets which do not have time to mix and burn prior to exhaust valve opening. Higher temperatures at the end of combustion enhance the burnout of soot, while high temperatures at the time of injection reduce air entrainment and increase soot formation. Using a conceptual model based on in-cylinder soot and combustion measurements, trends seen in exhaust particulate can be explained. The current trend in diesel engine emissions control involves multi-injection combustion strategies which are transforming the picture of diesel combustion rapidly into a series of low temperature, stratified charge, premixed combustion events where NOx formation is avoided because of low temperature and soot formation is avoided by leaning the mixture or increasing air entrainment prior to ignition.  相似文献   

14.
由于具有较高的十六烷值,相对简单的化学结构、无碳烟排放以及易于与运送的特点,二甲醚被公认是最有发展潜力的柴油机代用燃料之一。而重油作为海洋运输中最主要的燃料,燃油品质低劣。在此项研究中,我们通过试验,在一台直燃式柴油机上燃用二甲醚和重油混合燃料,观察并测量排放情况。结果发现:二甲醚和重油复合燃料是一种有效的清洁代用燃料,能有效降低柴油机废弃物CO、HC和烟度的排放。  相似文献   

15.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

16.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

17.
Though, as a renewable energy resource, alcohol fuel has many advantages in China, it is difficult for diesel engines to operate on alcohol due to its low cetane number and high latent heat of vaporization. This paper proposes an approach to its ignition problem by combining internal exhaust gas recirculation (EGR) with injection of small diesel fuel. Based on this approach, a two-stroke single-cylinder diesel engine was developed. Preliminary studies demonstrated that the engine can run on alcohol with almost zero level of smoke and low exhaust gas temperature, and that the engine operating on alcohol has lower nitrogen oxide (NOx) emissions and 2–3% higher effective thermal efficiency than that operating on diesel fuel in moderate and high load zones.  相似文献   

18.
In order to realize a premixed compression ignition (PCI) engine, the effects of bioethanol–gas oil blends and exhaust gas recirculation (EGR) on PM–NOx trade-off have been investigated focusing on ignition delay, premixed combustion, diffusion combustion, smoke, NOx and thermal efficiency. The present experiment was done by increasing the ethanol blend ratio and ethanol and by increasing the EGR ratio in a single cylinder direct injection diesel engine. It is found that a remarkable improvement in PM–NOx trade-off can be achieved by promoting the premixing based on the ethanol blend fuel having low evaporation temperature, large latent heat and low cetane number as well, in addition, based on a marked elongation of ignition delay due to the low cetane number fuel and the low oxygen intake charge. As a result, very low levels of NOx and PM, which satisfies the 2009 emission standards imposed on heavy duty diesel engines in Japan, were achieved without deterioration of brake thermal efficiency in the PCI engine fuelled with the 50% ethanol blend diesel fuel and the high EGR ratio. It is noticed that smoke can be reduced even by increasing the EGR ratio under the highly premixed condition.  相似文献   

19.
In this study, chicken fat biodiesel with synthetic Mg additive was studied in a single-cylinder, direct injection (DI) diesel engine and its effects on engine performance and exhaust emissions were studied. A two-step catalytic process was chosen for the synthesis of the biodiesel. Methanol, sulphuric acid and sodium hydroxide catalyst were used in the reaction. To determine their effects on viscosity and flash point of the biodiesel, reaction temperature, methanol ratio, type and amount of catalyst were varied as independent parameters. Organic based synthetic magnesium additive was doped into the biodiesel blend by 12 μmol Mg. Engine tests were run with diesel fuel (EN 590) and a blend of 10% chicken fat biodiesel and diesel fuel (B10) at full load operating conditions and different engine speeds from 1800 to 3000 rpm. The results showed that, the engine torque was not changed significantly with the addition of 10% chicken fat biodiesel, while the specific fuel consumption increased by 5.2% due to the lower heating value of biodiesel. In-cylinder peak pressure slightly rose and the start of combustion was earlier. CO and smoke emissions decreased by 13% and 9% respectively, but NOx emission increased by 5%.  相似文献   

20.
The use of biodiesel as an alternative diesel engine fuel is increasing rapidly. However, due to technical deficiencies, they are rarely used purely or with high percentages in unmodified diesel engines. Therefore, in this study, we used ethanol as an additive to research the possible use of higher percentages of biodiesel in an unmodified diesel engine. Commercial diesel fuel, 20% biodiesel and 80% diesel fuel, called here as B20, and 80% biodiesel and 20% ethanol, called here as BE20, were used in a single cylinder, four strokes direct injection diesel engine. The effect of test fuels on engine torque, power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and CO, CO2, NOx and SO2 emissions was investigated. The experimental results showed that the performance of CI engine was improved with the use of the BE20 especially in comparison to B20. Besides, the exhaust emissions for BE20 were fairly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号