首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Changes in fat matter due to the microbial thermostable lipases are among the most significant deteriorations influencing the shelf life of whole milk powder. As a consequence, free fatty acids are produced, being the short-chain acids mainly responsible for the rancidity flavour. The aim of this work was to evaluate changes in different fatty acid concentrations during the storage of whole milk powder produced in two different seasons. Samples of whole milk powder produced in winter and summer and packed under inert atmosphere were used in the study. The samples were stored at 21°C and 40°C. Samples stored at 21°C were evaluated every 3 months, whereas samples stored at 40°C were evaluated monthly by free fatty acids profile and sensory analysis. Data were processed by principal component analysis and anova . Results showed that changes in the free fatty acids of milk powders were correlated with the season of manufacture. Temperature and storage time had little influence on that profile.  相似文献   

2.
Consumers are increasingly aware that food components have the potential to influence human health maintenance and disease prevention, and dietary fatty acids (FA) have been of special interest. It has been 25 years since the last survey of US milk FA composition, and during this interval substantial changes in dairy rations have occurred, including increased use of total mixed rations and byproduct feeds as well as the routine use of lipid and FA supplements. Furthermore, analytical procedures have improved allowing greater detail in the routine analysis of FA, especially trans FA. Our objective was to survey US milk fat and determine its FA composition. We obtained samples of fluid milk from 56 milk processing plants across the US every 3 mo for one year to capture seasonal and geographical variations. Processing plants were selected based on the criteria that they represented 50% or more of the fluid milk produced in that area. An overall summary of the milk fat analysis indicated that saturated fatty acids comprised 63.7% of total milk FA with palmitic and stearic acids representing the majority (44.1 and 18.3% of total saturated fatty acids, respectively). Unsaturated fatty acids were 33.2% of total milk FA with oleic acid predominating (71.0% of total unsaturated fatty acids). These values are comparable to those of the previous survey in 1984, considering differences in analytical techniques. Trans FA represented 3.2% of total FA, with vaccenic acid being the major trans isomer (46.5% of total trans FA). Cis-9, trans-11 18:2 conjugated linoleic acid represented 0.55% total milk FA, and the major n-3 FA (linolenic acid, 18:3) composed 0.38%. Analyses for seasonal and regional effects indicated statistical differences for some FA, but these were minor from an overall human nutrition perspective as the FA profile for all samples were numerically similar. Overall, the present study provides a valuable database for current FA composition of US fluid milk, and results demonstrate that the milk fatty acid profile is remarkably consistent across geographic regions and seasons from the perspective of human dietary intake of milk fat.  相似文献   

3.
目的探讨不同类型膳食脂肪酸对肥胖小鼠肝脏及其血液中脂肪酸组成及代谢相关基因的影响。方法 8周龄雄性C57BL/6小鼠随机分为7组,即对照组(喂基础饲料)、长链饱和脂肪酸(LCSFA)组(喂猪油高脂饲料)、中链饱和脂肪酸(MCSFA)组(喂椰子油高脂饲料)、n-3多不饱和脂肪酸(n-3 PUFA)组(喂亚麻籽油高脂饲料)、n-6多不饱和脂肪酸(n-6 PUFA)组(喂大豆油高脂饲料)、单不饱和脂肪酸(MUFA)组(喂橄榄油高脂饲料)和反式脂肪酸(TFA)组(喂8%氢化大豆油高脂饲料),每组10只,共干预16周,所有种类饲料总能量均相同,基础饲料脂肪供能比为10%,各高脂饲料脂肪供能比均为45%,喂养周期结束后,禁食12 h,麻醉后立刻解剖取出肝脏。采用气相色谱法分析肝脏及其血液中脂肪酸组成的变化,实时荧光定量聚合酶链式反应(PCR)检测肝脏脂肪酸代谢相关基因的表达,肝脏脂质沉积采用油红O染色法检测。结果与对照组比较,LCSFA组、MCSFA组、n-6 PUFA组、MUFA组和TFA组小鼠肝脏中均出现明显的脂质沉积,n-3 PUFA组小鼠肝脏未出现明显的脂质沉积。与对照组比较,LCSFA组小鼠肝脏及血液中总n-6 PUFA和总PUFA含量升高; n-3 PUFA组小鼠肝脏及血液中总n-3 PUFA和总PUFA含量增加,但总MUFA含量减少; n-6 PUFA组小鼠肝脏及血液中总n-6PUFA、总n-3 PUFA和总PUFA含量升高,但总饱和脂肪酸(SFA)和总MUFA含量降低; MUFA组小鼠肝脏及血液中总SFA含量减少; TFA组小鼠肝脏及血液中C18∶1 n-9t(TFA)含量升高;以上差异均有统计学意义(P0. 05)。LCSFA组和MCSFA组小鼠肝脏脂肪酸代谢基因固醇调节元件结合蛋白1(SREBP-1c) mRNA水平高于对照组和n-6 PUFA组,差异均有统计学意义(P0. 05)。结论小鼠肝脏及其血液中脂肪酸构成与其对应的膳食脂肪酸模式一致。不同类型脂肪酸高脂饲料可通过对相关基因的表达影响肥胖状态下肝脏的脂质代谢及脂质沉积。  相似文献   

4.
膳食纤维是一类不能被胃肠道分解的碳水化合物,但它可以被肠道微生物降解成短链脂肪酸。膳食纤维和短链脂肪酸对机体的代谢和健康具有重要的保健功能。本文概括了膳食纤维的类型和来源不仅影响肠道微生物的组成和功能,还影响着宿主与微生物之间的相互作用。重点阐述了膳食纤维能够通过肠道微生物产生短链脂肪酸的机制,进一步探讨了短链脂肪酸、阿魏酸、琥珀酸等对肠道微生物的组成、多样性的影响。  相似文献   

5.
The fatty acid composition of Khoa a heat‐desiccated milk product was determined and compared with those obtained with cow milk, buffalo milk and toned milk. Fatty acid methyl esters were analysed by capillary gas chromatography (GC). Among the Khoa samples analysed, 57% showed fatty acid composition characteristic of milk fat. The ratio of major saturated fatty acids to unsaturated fatty acids (S/U) including 18:1 transfatty acids was calculated for all the fats. The GC profiles of 43% Khoa samples showed the composition of fatty acids not conforming to milk fats. The Khoa samples adulterated with nonmilk fats were further confirmed by cholesterol and triglyceride estimation.  相似文献   

6.
Comparing the fatty acid composition of organic and conventional milk   总被引:2,自引:0,他引:2  
During a 12-mo longitudinal study, bulk-tank milk was collected each month from organic (n = 17) and conventional (n = 19) dairy farms in the United Kingdom. All milk samples were analyzed for fatty acid (FA) content, with the farming system type, herd production level, and nutritional factors affecting the FA composition investigated by use of mixed model analyses. Models were constructed for saturated fatty acids, the ratio of polyunsaturated fatty acids (PUFA) to monounsaturated fatty acids, total n-3 FA, total n-6 FA, conjugated linoleic acid, and vaccenic acid. The ratio of n-6:n-3 FA in both organic and conventional milk was also compared. Organic milk had a higher proportion of PUFA to monounsaturated fatty acids and of n-3 FA than conventional milk, and contained a consistently lower n-6:n-3 FA ratio (which is considered beneficial) compared with conventional milk. There was no difference between organic and conventional milk with respect to the proportion of conjugated linoleic acid or vaccenic acid. A number of factors other than farming system were identified which affected milk FA content including month of year, herd average milk yield, breed type, use of a total mixed ration, and access to fresh grazing. Thus, organic dairy farms in the United Kingdom produce milk with a higher PUFA content, particularly n-3 FA, throughout the year. However, knowledge of the effects of season, access to fresh grazing, or use of specific silage types could be used by producers to enhance the content of beneficial FA in milk.  相似文献   

7.
The aim of this study was to examine the capacity of quebracho tannin extract (QTE) to modulate the fatty acid (FA) profile in the milk fat of cows. Fifty Holstein cows yielding 33.2 ± 8.2 kg/d of milk were divided into 2 groups. The cows were fed a basal diet with a forage-concentrate ratio of 66:34 on a dry matter (DM) basis. Diets tested were control (CON, basal diet without QTE) and basal diet plus 15 or 30 g of QTE/kg of DM (QTE15 and QTE30, respectively). Two treatments could be tested simultaneously and were arranged along 6 periods. The milk FA profile was characterized by increments in the proportion of linoleic (LA) and α-linolenic acid (α-LNA) (QTE15 = 10 and 6.1%; QTE30 = 28 and 25%, respectively) compared to CON, which might indicate reduced ruminal biohydrogenation (BH) of both dietary LA and α-LNA. Vaccenic acid (VA) in the milk fat was reduced (QTE15 8.9% and QTE30 12%) compared to CON, which may be linked to inhibited BH of LA and α-LNA. Rumenic acid (RA), a conjugated LA (cis-9,trans-11 conjugated linoleic acid) and an important human health promoter, was unfortunately decreased (QTE15 8.3% and QTE30 16%) in the milk compared with CON, probably because of inhibited ruminal BH of LA. However, reduced RA in the milk was probably due to reduced availability of VA produced in the rumen and the consequently low VA available to be desaturated to RA in the mammary gland by Δ9-desaturase. The proportions of total polyunsaturated FA were increased with QTE15 and QTE30 by 4.7 and 15% compared to CON, respectively, and the long-chain FA proportions were also increased (QTE15 2.0% and QTE30 8.2%). Moreover, myristic and palmitic acid were reduced by QTE30 (9.6 and 3.3%, respectively) compared to CON, which also contributed to increasing the nutritional quality of milk because they are recognized to increase high-density lipoprotein in humans. Branched-chain FA in milk was reduced with QTE treatments, which indicates inhibited ruminal BH and microbial activity. In general, our findings suggest that dietary QTE have the potential to modulate FA profile of milk fat, and this effect is dosage dependent. Because QTE influenced the FA profile of milk fat both positively and negatively, further research is needed before concluding that QTE may improve the nutritional quality of cow milk fat in human diets.  相似文献   

8.
Seasonal variation in the Dutch bovine raw milk composition   总被引:2,自引:0,他引:2  
In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.  相似文献   

9.
Dairy bulk tank milk was sampled during 1 yr from 2 conventional (C1 and C2) and 1 organic dairy (O1) for studying the seasonal variation as well as the variation between dairies in the composition and properties of milk fat. The composition of fatty acids (FA) as well as triglycerides (TAG) in milk fat was analyzed, and the melting properties of milk fat were analyzed by use of differential scanning calorimetry. The main differences in fat content and composition of FA in milk fat between dairies included a higher fat content, greater proportion of C18:0, and smaller proportion of C16:0 in milk from dairy C2, which could be associated with a higher frequency of Jersey herds supplying milk to this dairy. The organic milk was characterized by a higher proportion of C18:3n-3, C18:2 cis-9,trans-11, C6 to C14, a lower proportion of C18:1 cis-9, and a higher melting point of the low-melting fraction. The TAG composition showed a greater proportion of C24 to C38 TAG in milk fat from dairy O1 and a greater proportion of C52 to C54 TAG in milk fat from dairy C2, which was in accordance with the differences in FA composition. Melting point of the low-melting fraction was higher for milk fat from dairy O1 compared with dairies C1 and C2, whereas no differences between dairies were observed with respect to melting points of the medium- and high-melting fractions. The seasonal variation in FA composition was most pronounced for dairy O1 although similar patterns were observed for all dairies. During the summer, the content of C18:0 and C18:1 cis-9 in milk fat was greater, whereas the content of C14:0 and C16:0 was lower. In addition, the content of C18:2 cis-9,trans-11 and C18:1 trans-11 increased in late summer for dairy O1. The differential scanning calorimetry thermograms of individual milk fat samples could be divided into 3 groups by principal component analysis. For dairy O1, summer samples belonged to group 1, spring and autumn samples to group 2, and winter samples to group 3. For dairy C1 winter samples (group 2), were separated from other samples (group 1), and for dairy C2 all samples were in group 1. Individual melting points were related to FA composition, and the melting point of the low-melting fraction was positively correlated to the content of C14:0 and C16:0 in milk fat and negatively correlated to the content of C18:1 cis-9 and C18:0.  相似文献   

10.
In this study, the effect of pasteurisation temperature on fatty acid composition of cheese was investigated. The fatty acid composition of raw and different heat‐treated milk, salt and salt‐free cheese were determined using cheese made from raw milk at temperatures varying between 70 and 90°C for 5 min. Generally, C 16:0 palmitic acid was the major fatty acid present in all milk and cheese samples. C 18:1 t11 vaccenic acid was the major trans fatty acid (TFA) in all samples. C 18:2 cis‐9, trans‐11 (Rumenic acid) was the major CLA isomer in these samples. Pasteurisation temperatures had no effect on TFA, CLA and fatty acid composition of the milk and cheese samples.  相似文献   

11.
Consumers are becoming increasingly health conscious, and food product choices have expanded. Choices in the dairy case include fluid milk labeled according to production management practices. Such labeling practices may be misunderstood and perceived by consumers to reflect differences in the quality or nutritional content of milk. Our objective was to investigate nutritional differences in specialty labeled milk, specifically to compare the fatty acid (FA) composition of conventional milk with milk labeled as recombinant bST (rbST)-free or organic. The retail milk samples (n = 292) obtained from the 48 contiguous states of the United States represented the consumer supply of pasteurized, homogenized milk of 3 milk types: conventionally produced milk with no specialty labeling, milk labeled rbST-free, and milk labeled organic. We found no statistical differences in the FA composition of conventional and rbST-free milk; however, these 2 groups were statistically different from organic milk for several FA. When measuring FA as a percentage of total FA, organic milk was higher in saturated FA (65.9 vs. 62.8%) and lower in monounsaturated FA (26.8 vs. 29.7%) and polyunsaturated FA (4.3 vs. 4.8%) compared with the average of conventional and rbST-free retail milk samples. Likewise, among bioactive FA compared as a percentage of total FA, organic milk was slightly lower in trans 18:1 FA (2.8 vs. 3.1%) and higher in n-3 FA (0.82 vs. 0.50%) and conjugated linoleic acid (0.70 vs. 0.57%). From a public health perspective, the direction for some of these differences would be considered desirable and for others would be considered undesirable; however, without exception, the magnitudes of the differences in milk FA composition among milk label types were minor and of no physiological importance when considering public health or dietary recommendations. Overall, when data from our analysis of FA composition of conventional milk and milk labeled rbST-free or organic were combined with previous analytical comparisons of the quality and composition of these retail milk samples, results established that there were no meaningful differences that would affect public health and that all milks were similar in nutritional quality and wholesomeness.  相似文献   

12.
Ruminal biohydrogenation of fatty acids (FA) was studied in vivo in relation with the fermentation pattern in the rumen and milk secretion. Calcium salts (Ca salts) of palm oil (diet 1) or rapeseed oil (diet 2) were given to dairy cows (about 650 g day?1) in a diet based on maize silage. Significant variation in propionate concentration was observed among diets. Rumen pH and total volatile fatty acids (VFA) did not change. Duodenal FA pattern was analysed throughout the day. With diets 1 and 2, linoleic acid was to a large extent biohydrogenated: calculations of ruminal biohydrogenation were equal to 63.6 and 74.0% for diets 1 and 2, respectively. No difference between diets was observed in milk production, fat and protein percentages. The percentages of stearic and octadecenoic FA in milk were higher and the percentage of palmitic acid was lower with Ca salts of rapeseed oil FA than with Ca salts of palm oil FA.  相似文献   

13.
Thirty male lambs were assigned to one of 3 concentrate diets supplemented with 45 (E0), 286 (E1) or 551 (E2) mg/kg DM of dl-α-tocopheryl acetate to test the effect of vitamin E supplementation on muscle, caudal and perirenal fatty acid (FA) compositions. Specific attention was paid to C18:1 10t, usually observed in high proportions with high-starch or high-unsaturated FA diets. Vitamin E supplementation increased the α-tocopherol plasma concentrations of lambs. It did not modify lamb growth and slaughter parameters. Vitamin E supplementation did not modify FA composition in most tissues but it increased the C18:2 n − 6/C18:3 n − 3 ratio in muscle and adipose tissues of the E1 group compared to E0 and E2 groups. Vitamin E supplementation enhanced the C18:1 10t proportion in muscle and adipose tissues and it decreased the C18:2 9c,11t proportion in adipose tissues, especially in the E2 group. These changes may not be favourable for the nutritional value of lamb meat.  相似文献   

14.
The aim of this study was to assess the effects of seasonal variation on the changes of the fatty acid (FA) and triacylglycerol (TAG) composition of bovine milk fat (MF) in a nonseasonal milking system. Weekly milk samples were collected from 14 dairy factories and pooled per week as representative samples of the average Dutch bovine milk. The sample collection started in May 2017 and finished in April 2018, resulting in a total of 52 samples, corresponding to each week of the year. The samples were analyzed for MF content (%) and FA and TAG composition using gas chromatography with flame-ionization detection. The increased intake of C18:3 cis-9,12,15 through grass feeding in spring and summer was associated with major changes in MF FA composition, including reduced proportions of de novo synthesized FA and presence of several rumen biohydrogenation products and conjugated linoleic acid isomers in MF. These changes in seasonal FA composition had an effect on TAG seasonal variation. The TAG seasonal variation showed that all TAG groups were significantly different between months. The low molecular weight and the medium molecular weight TAG groups increased in winter and decreased in summer, whereas the high molecular weight TAG groups increased in summer and decreased in winter. Based on pooled monthly samples, MALDI-TOF-mass spectrometry allowed the analysis of even- and odd-chain TAG species in MF based on their total carbon number and number of double bonds. These analyses indicated saturated TAG species to be greatest in winter, whereas monounsaturated, polyunsaturated, and odd-chain TAG species were greatest in summer. Our study showed that TAG seasonal variation in a nonseasonal milking system is influenced by the variation in FA composition throughout the seasons.  相似文献   

15.
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.  相似文献   

16.
Thirty-six Holstein cows were blocked by parity and allotted by stage of lactation to 6 treatments to evaluate the effects of dietary soy oil, conjugated linoleic acid (CLA; free acid or calcium salt), or both, on CLA content of milk. Diets were fed for 4 wk and are as follows: (1) control, (2) control + 5% soy oil, (3) control + 1% CLA, (4) control + 1% Ca(CLA)2, (5) control + 1% CLA + 4% soy oil, and (6) control + 1% Ca(CLA)2 + 4% soy oil. Rumen volatile fatty acid -concentrations, blood fatty acid concentrations, milk yield, and milk composition were measured weekly or biweekly. Dry matter intake and milk yield were recorded daily. Dietary supplementation of soy oil or CLA had no effect on daily milk yield, milk protein concentration and production, or milk lactose concentration and production. Supplementation of unsaturated fatty acids as soy oil, CLA, or Ca(CLA)2 increased total fatty acid concentration in plasma, decreased milk fat concentration and production, and had no effect on rumen volatile fatty acid concentrations. The weight percentage of CLA in milk was increased from 0.4 to 0.7% with supplementation of 1% CLA, to 1.2% with supplementation of soy oil, and to 1.3% with supplementation of 1% CLA plus soy oil. Supplementation with Ca(CLA)2 or Ca(CLA)2 + soy oil increased the CLA content of milk fat to 0.9 and 1.4%, respectively. In summary, adding 5% soy oil was as effective as supplementing CLA, Ca(CLA)2, or a combination of 1% CLA (free acid or calcium salt) + 4% soy oil at increasing CLA concentrations in milk fat. Feeding CLA as the calcium salt resulted in greater concentrations of CLA in milk fat than did feeding CLA as the free acid. Dietary supplementation of 5% soy oil or 4% soy oil + 1% CLA as the free acid or the calcium salt increased the yield of CLA in milk.  相似文献   

17.
Impaired quality due to a high content of free fatty acids (FFA) and off-flavors has caused challenges in the development of Norwegian goat milk products. The present study aimed to examine the effect of lipid-supplemented concentrates on milk fat content, fatty acid composition, FFA, lipoprotein lipase activity, sensory properties, and size of milk fat globules of goat milk. Thirty goats assigned to 3 experimental groups were fed different concentrates from 60 d in milk (DIM) until late lactation (230 DIM). The diets were (1) control concentrate (no added fat); (2) control concentrate with 8% (added on air-dry basis) hydrogenated palm oil enriched with palmitic acid (POFA); and (3) control concentrate with 8% (added on air-dry basis) rapeseed oil (RSO). The POFA group produced milk with the highest fat content, and fat content was positively correlated with the mean size of milk fat globules. Goats in the RSO group had a higher content of long-chain and unsaturated fatty acids, whereas milk from goats in the POFA group had a higher content of palmitic and palmitoleic acids (C16:0 and C16:1 cis). The control group produced milk with a higher content of short-, medium-, odd-, and branched-chain fatty acids compared with the 2 other groups. The content of FFA in milk was low in early and late lactation and peaked in mid lactation (90 DIM). A high content of FFA was correlated with poor sensory properties (tart/rancid flavor). The RSO group produced milk with lower content of FFA and off-flavors in mid lactation and a higher proportion of unsaturated fatty acids. Therefore, replacement of palm oil with rapeseed oil as a lipid source in dairy goat feed would be favorable.  相似文献   

18.
Factors influencing variation of fatty acid content in ovine milk   总被引:1,自引:0,他引:1  
Between January 2006 and December 2007, a total of 4,579 test-day observations for contents of milk fatty acids (FA) were obtained from 2,218 lactations of 1,109 ewes belonging to 14 Churra dairy flocks. The 36 analyzed FA were quantified as grams per 100 g of total FA and were grouped as 18 dependent variables: 10 FA, 6 groups of FA, and 2 FA indexes. Flock, day of testing within flock (TD), ewe age, stage of lactation, and season effects contributed significantly to variations in FA. The 2 most important variation factors were flock (3 to 30% of total variance) and TD (35 to 70% of total variance). The percentage of variance explained by the TD effect for conjugated linoleic acid (CLA, C18:2 cis-9, trans-11) and linolenic acid (C18:3 cis-9, cis-12, cis-15) was particularly high: 60.7 and 68.2%, respectively. The season effect was also a very important variation factor, closely linked to feeding. The most significant seasonal variations were observed in polyunsaturated FA, with the highest values occurring in spring and summer and the lowest in winter. More specifically, CLA and linolenic acid contents were 44 and 30% higher in spring-summer than in winter. As the age of the ewe increased, the monounsaturated and polyunsaturated FA decreased and the short- and medium-chain saturated FA increased. The CLA and the CLA/C18:1 trans-11 Δ9-desaturase index increased significantly throughout lactation. The correlation coefficient between rumenic acid (CLA) and vaccenic acid was high (0.47) because of the precursor-product relationship via the Δ9-desaturase enzyme. The correlation coefficients were high between C10:0 and C12:0 (0.79), C12:0 and C14:0 (0.73), and C14:0 and C16:0 (0.29), probably because of their similar metabolic origin. Positive correlations were also obtained among the C18 FA family. All the studied factors of FA variation would be considered as fixed effects in the statistical models used for estimation of genetic and phenotypic parameters from test-day records of commercial flocks.  相似文献   

19.
Interest has been increasing to enhance the contents of healthy polyunsaturated fatty acid (PUFA) in milk. However, trans fatty acids and conjugated linoleic acid (CLA) can be altered after thermal processing and high pressures disrupt the milk fat globule membrane, exposing the lipid core and helping its oxidation. The objective of the present research was to study whether processing can alter the fatty acid composition of milk and if these changes are affected by PUFA concentration as previous studies suggest. Two cow milk batches (500 L each), one naturally enriched in PUFA, were processed to obtain pasteurized; high temperature, short time; UHT; high pressure; and microwave pasteurized samples. The detailed fatty acid composition was analyzed with special attention to trans fatty acids and CLA isomers. Results showed that after high temperature, short time processing, total CLA content increased in both milk batches, whereas sterilization resulted in a sigmatropic rearrangement of C18:2 cis-9,trans-11 to C18:2 trans-9,trans-11. The extent of these effects was greater in milks naturally enriched in PUFA.  相似文献   

20.
The objective of this study was to estimate genetic parameters for conjugated linoleic acid (CLA) and other selected milk fatty acid (FA) content and for unsaturation ratios in the Italian Holstein Friesian population. Furthermore, the relationship of milk FA with milk fat and protein content was considered. One morning milk sample was collected from 990 Italian Holstein Friesian cows randomly sampled from 54 half-sib families, located in 34 commercial herds in the North-eastern part of Italy. Each sample was analyzed for milk percentages of fat and protein, and for single FA percentages (computed as FA weight as a proportion of total fat weight). Heritabilities were moderate for unsaturated FA, ranging from 0.14 for C16:1 to 0.19 for C14:1. Less than 10% of heritability was estimated for each saturated FA content. Heritability for index of desaturation, monounsaturated FA and CLA/trans-11 18:1 ratio were 0.15, 0.14, and 0.15, respectively. Standard errors of the heritability values ranged from 0.02 to 0.06. Genetic correlations were high and negative between C16:0 and C18:0, as well as between C14:0 and C18:0. Genetic correlations of index of desaturation were high and negative with C14:0 and C16:0 (−0.70 and −0.72, respectively), and close to zero (0.03) with C18:0. The genetic correlation of C16:0 with fat percentage was positive (0.74), implying that selection for fat percentage should result in a correlated increase of C16:0, whereas trans-11 C18:1 and cis-9, trans-11 C18:2 contents decreased with increasing fat percentage (−0.69 and −0.55, respectively). Genetic correlations of fat percentage with 14:1/14 and 16:1/16 ratios were positive, whereas genetic correlations of fat percentage with 18:1/18 and CLA/trans-11 18:1 ratios were negative. These results suggest that it is possible to change the milk FA composition by genetic selection, which offers opportunities to meet consumer demands regarding health aspects of milk and dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号