首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a four year study on a wheat-green gram (or cowpea) — pearl millet intensive cropping system a total production of 9–10 tonnes of wheat equivalents per year removed 29–30kg P ha–1. If only 26 kg P ha–1 was used then total grain production as well as P uptake, was highest when all the P was applied to wheat. Only when amounts larger than 26 kg P ha–1 were applied was it justified to apply P to pearl millet and green gram (or cowpea). Productivity of the cropping system increased up to 58.5 kg P ha–1 and at this level two thirds of P was applied to wheat, while pearl millet and green gram or cowpea received the remaining one-third. A positive P balance in soil was observed only when 26 k P ha–1 yr–1 or more was applied.Pressure of growing population and per capita diminution or arable land has focussed attention on multiple cropping systems in many Asian countries [1, 2]. In North-Western India the cropping system changed from a single rainy (July–October) or winter (November–April) crop a year prior to the 1960's to two-crops-a-year (both a rainy season and winter crop) in the 1970.s and then in the late 1970's a third summer (May–June) crop was also included. Wheat — green gram (or cowpea) — pearl millet is such a three-crops-a-year multiple cropping system.Phosphate is the costliest major plant nutrient in India and farmers following multiple cropping systems are keen to know the way the phosphate should be apportioned to different crops in a cropping system particularly when small amounts of P are applied. Such information can come only from long-term P fertilization experiments [3, 4]. The objective of the present experiment on a wheat-green gram (or cowpea) — pearl millet multiple cropping system was to study the direct and residual effects of P applied to one crop on the other crops grown in succession and to find the best possible way in which a limited amount of P could be apportioned between the different crops in the rotation. An attempt has also been made to work out the P balance in soil.  相似文献   

2.
Results of an eight-year study on long-term effect of N and P application in a pearlmillet—wheat sequence is reported. There was little or no residual effect of N on any of the crops. Pearlmillet needed 70 to 80 kg N and wheat required more than 120 kg N ha–1 every year for optimum grain yield. There was no soluble P build up in soil by continuous P application. Fertilizing wheat every year with 19 kg P and pearlmillet with 13 kg P ha–1 is considered optimum.Continuous cropping leading to a production of 216 tonnes of biomass ha–1 in 17 crops and use of high analysis N (urea) and P (triple superphosphate) fertilizers had not impaired the K and Zn supplying capacity of these alluvial soils containing illite clay minerals. The experiment is being continued to monitor the productivity of the soil as affected by continuous cropping.  相似文献   

3.
Market opportunities will drive intensification of cassava production and fertilizer will play a role in this. A trial was initiated on 15 farmers fields (replications) in one village territory in Benin on a relatively fertile sedimentary soil site to identify nutrients limiting cassava yield using nutrient omission plots over three cropping years. There was no response to fertilizer in the first year when fresh root yields in the unamended control averaged 19.1 t ha–1. In the second year, the control yield was 16 t ha–1 and there were significant reductions from withholding P (3.5 t ha–1) and K (2 t ha–1) from a complete fertilizer regime. Nutrient balance after 1 and 2 years (cumulative) showed substantial P and K deficits in unamended plots. In the third year, the control yield was 12.9 t ha–1 and effects of withholding K (5.3 t ha–1), P (5.0 t ha–1) and N (3.0 t ha–1) were statistically significant. Soil K was a significant source of variation in yield in the third year. In the third year of annual nutrient additions soil P and K in the top 0.3 m were increased by 37 and 40%, respectively. Based on the cumulative nutrient balance calculation, the annual application needed to compensate nutrient depletion was 13 kg N, 10 kg P, and 60 kg K ha–1. Partial budget analysis based on these amounts of fertilizer suggested that investment was clearly justified in the third year of continuous cropping at current low cassava prices.  相似文献   

4.
Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha–1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha–1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha–1 plus some P applied directly to wheat.  相似文献   

5.
A two year field experiment was carried out at the Indian Agricutural Research Institute, New Delhi - 110012, India to assess the effect of mungbean (Vigna radiata L.) and uridbean (Vigna mungo L.) residues on the yield and N uptake of a succeeding wheat crop as compared to sorghum fodder. Sorghum produced 3.5–7.5 times more dry matter and removed 2–3 times more nitrogen than mungbean or uridbean during same duration (80 ± 10 days) of their growth. Without N application the grain yield of wheat following mungbean and uridbean (without residue incorporation) was 0.45 and 0.48 t ha–1 more than the yield of wheat following sorghum fodder. These yields were equivalent to that predicted when 36 and 38 kg urea-N ha–1, respectively, was directly applied to wheat. The residual effects of these grain legumes were higher when succeeding wheat was fertilized with 60 kg urea-N ha–1; at this level mungbean and uridbean spared 52 and 43 kg urea-N ha–1, respectively, in succeeding wheat. The residual effect of mungbean and uridbean further increased when their residue was incorporated in soil; with this practice they spared 94 and 115 kg urea-N ha–1, respectively, without N application to wheat and 74 and 82 kg urea-N ha–1, respectively, with an application of 60 kg urea-N ha–1 to wheat.Mungbean and uridbean, without residue incorporation, increased aboveground plant-N uptake of succeeding wheat by 11.5–34.9 and 10.8–34.0 kg N ha–1, respectively; whereas with residue incorporation, they increased aboveground plant-N content of succeeding wheat by 26.1–45.8 and 32.7–47.7 kg N ha–1, respectively.The results of the present study indicate that there is both an indirect sparing effect and a direct residual effect of mungbean and uridbean on the nitrogen needs of succeeding wheat, more so when their residues are incorporated in soil.  相似文献   

6.
A 2-year field experiment was conducted to study the effects of the nitrification inhibitors dicyandiamide (DCD) and neem cake on the efficiency of applied prilled urea nitrogen in a maize-wheat cropping system. Prilled urea (PU), neem cake coated urea (NCU) and DCD blended urea (DCDU) were applied to maize at two levels (60 and 120 Kg N ha–1) and two methods (all preplant and split) of N application along with a no-nitrogen control and their relative residual effect was studied on succeeding wheat grown with three levels of N as PU.In 1990 maize responded well to N up to 60 kg N ha–1; at this level PU increased maize yield by 1.03 t ha–1, whereas NCU and DCDU increased maize yield by 1.55 and 1.18 t ha–1 over the control, which was equivalent to an application of 127 and 94 kg N ha–1 as PU, respectively. Furthermore, when the results were averaged over two years of study, residual N from the application of NCU and DCDU at 60 kg N ha–1 left after maize cropping increased the grain yield of the succeeding wheat crop grown with 60 kg N ha–1 as PU by 1.97 and 1.68 t ha–1, respectively, over a no nitrogen control or 60 kg N ha–1 as PU applied to the maize. This was equal to an application of 96 and 82 kg N ha–1 as PU to wheat.Thus, neem cake increased the efficiency of urea N applied to maize and benefits were also seen in the succeeding wheat yield in the maize-wheat cropping system.  相似文献   

7.
Efficient fertilizer use is a prerequisite for achieving optimum crop yield while avoiding environmental contamination. Cereal response to nitrogen (N), sulfur (S), and phosphorus (P) were determined for 6 years under differing tillage [conventional-till (CT) vs. no-till (NT)] and intensity of cropping (cereal/fallow vs. cereal/cereal). Semidwarf white winter wheat (Triticum aestivum L.) alternated yearly with either fallow or spring cereal [barley (Hordeum vulgare L.) or spring wheat] on a Typic Haploxeroll soil in a 415 mm rainfall zone. Fertilizer treatments were no fertilizer (None), N only (N), N plus S (NS), and N plus S plus P (NSP). Average application rate, when applied, was 109 kg N, 18 kg S, and 11 kg P ha–1. Average cereal yield without fertilizer was 1.82 t ha–1. Nitrogen increased grain yield in 6 of 6, S in 4 of 6, and P in 3 of 6 years, with P and S response significant the remaining years at the 10% probability level. Average yield increases were 1.11 t ha–1 for N, 0.93 t ha–1 for S, and 0.47 t ha–1 for P. The NT/CT yield ratio was 0.60, 0.75, 0.93, and 0.95 with None, N, NS, and NSP addition, respectively, indicating that N and S deficiency were more severe in no-till. Limited increase in the NT/CT ratio with P addition indicated that P deficiency was less affected by tillage. Winter wheat always yielded less under NT than CT regardless of fertility, whereas spring cereals reached equality when fertilized with NSP. Annually-cropped wheat yielded 52, 67, 89, and 90% of wheat after fallow with None, N, NS, and NSP, respectively. Thus N and S, but not P, deficiency was more intense with increased frequency of cropping. Adequate fertility was a prime prerequisite for efficient yield in all systems.  相似文献   

8.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

9.
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS.  相似文献   

10.
In the development of short fallow systems as alternatives to shifting cultivation in West Africa, a long-term trial was established at the International Institute of Tropical Agriculture (IITA) on an Alfisol in the forest-savanna transitional zone of southwestern Nigeria, comparing three fallow systems; natural regrowth fallow, cover crop fallow and alley cropping on soil productivity and crop yield sustainability. The natural fallow system consisted of natural regrowth of mainly Chromolaena odorata shrub as fallow vegetation. The cover crop fallow system consisted of Pueraria phaseoloides, a herbaceous legume as fallow vegetation. The alley cropping system consisted of woody hedgerows of Leucaena leucocephala as fallow vegetation. The fallow lengths were 0 (continuous cropping), 1, 2 and 3 years after 1 year of maize/cassava intercropping. Biomass produced from natural fallow and cover crop fallow was burnt during the land preparation. Fertilizer was not applied throughout the study. Without fertilizer application, maize yield declined from above 3.0 t ha–1 to below 0.5 t ha–1 during 12 years of cultivation (1989–2000) on a land cleared from a 23-year old secondary forest. Temporal change in cassava tuber yield was erratic. Mean maize grain yields from 1993–2000 except for 1999 were higher in cover crop fallow system (1.89 t ha–1) than in natural fallow system (1.73 t ha–1), while natural fallow system outperformed alley cropping system (1.46 t ha–1). During the above 7 years, mean cassava tuber yield in cover crop system (7.7 t ha–1) did not differ from natural fallow system (8.2 t ha–1), and both systems showed higher cassava tuber than the alley cropping system (5.7 t ha–1). The positive effect of fallowing on crop yields was observed for both crops in the three systems, however, insignificant effects were seen when fallow length exceeded 1 year for cover crop and alley cropping, and 2 years for natural fallow. Soil pH, organic carbon, available P and exchangeable Ca, Mg and K decreased considerably after 12 years of cultivation, even in a 3-year fallow subplot. After 12 years, soil organic carbon (SOC) within 0–5 cm depth in alley cropping (13.9 g kg–1) and natural fallow (13.7 g kg–1) was higher than in cover crop fallow (11.6 g kg–1). Whereas significant increase in SOC with either natural fallow or alley cropping was observed only after 2 or 3 years of fallow, the SOC in the 1-year fallow alley cropping subplot was higher than that in continuous cropping natural fallow subplot. It can be concluded from our study that in transforming shifting cultivation to a permanent cropping, fallow with natural vegetation (natural fallow), herbaceous legumes (cover crop fallow) and woody legumes (alley cropping) can contribute to the maintenance of crop production and soil fertility, however, length of fallow period does not need to exceed 2 years. When the fallow length is reduced to 1 year, a better alternative to natural regrowth fallow would be the cover crop for higher maize yield and alley cropping for higher soil organic matter. For fallow length of 2 years, West African farmers would be better off with the natural fallow system.  相似文献   

11.
The relative efficiency of ortho and polyphosphates as P sources for wheat were studied in a field experiment with five sources—TSP, DAP, NP, APP (solid) and APP (Liquid) at three levels—13, 26 and 39 kg P ha–1 and the residual effect was studied on a succeeding cowpea (fodder). Both the crops were grown each year at same location. Wheat responded upto 39 kg P ha–1 in the first year but only upto 26 kg P ha–1 in the second year. The growth parameters—plant height and dry matter production and yield attributes-ears m–1, grains ear–1 and test weight were favourably influenced by P application. The rate of P uptake initially exceeded the dry matter production. Wheat when fertilized with 26 or 39 kg P ha–1 left behind a significant residual effect to raise the soil P availability and dry matter yield of cowpea. The grain yield of wheat was higher with APP's than with NP or DAP but the residual effect was the highest with NP. The magnitude of build up of soil available P with NP and APP's were similar and higher than DAP or TSP.  相似文献   

12.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

13.
The recovery of15N labelled ammonium fertilizer was studied during two cropping sequences: sugar beet—spring wheat and winter rye—sugar beet with the labelled N applied to the first crop of each sequence. The difference between fall and spring application was also investigated. For the first cropping sequence 100 kg N ha–1 labelled with 11.4%15N atom excess (a.e.) was applied to the sugar beets. This labelled N was followed in the sugar beets, in the soil profile at harvesting time as well as in the spring wheat of the following year. The first crop of sugar beet recovered 43–46% of the applied N, with 26–29% remaining in the soil at harvesting time and 25–31% could not be accounted for. Of the residual N, less than 1% could be recovered by the next crop of spring wheat. For the second cropping sequence 50 kg N ha–1 labelled with 11.5%15N a.e. was applied to the winter rye and followed in the winter rye and in the sugar beets of the following year. The recovery of the labelled fertilizer N applied to the winter rye of the second sequence was 20–27% and the sugar beets of the next year could only recover 2%. With respect to time of application, no difference in fertilizer N recovery was found between fall or spring application for the two sequences.  相似文献   

14.
A field experiment was conducted on an alkali soil to evaluate the direct and the residual effect of six levels of zinc i.e. 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg Zn ha–1 added either once to the first crop only or continuously to each crop on the growth, yield and chemical composition of plants grown in a rice-wheat cropping sequence. The soils were amended with gypsum applied at the uniform rate of 14 t ha–1. Zinc was supplied as zinc sulphate. Application of zinc at the rate of 2.25 kg ha–1 to both rice and wheat crops or an annual application of 4.5 kg Zn ha–1 only to rice was found optimum for rice-wheat sequence. Higher zinc applications increased the availability of zinc in the soil and its content in the plants but did not increase crop yield. DTPA extractable zinc build up was more for zinc applied at the rate of 2.25 kg ha–1 to each crop compared to a single zinc application of equivalent amount. Results of these studies have shown that continuous Zn application up to 27 kg Zn ha–1 to each crop did not induce nutrient imbalances and had no adverse effect on crop yield.  相似文献   

15.
The effect of annual banding of superphosphate (0–45 kg P ha−1) on soil phosphorus (P) content, growth, and yield of wheat was investigated from 1982 to 1998 in a major rainfed wheat production area of South Africa. Conventional tillage practices in a wheat monoculture cropping system were followed under summer rainfall conditions. The responses of wheat growth to fertilizer P application were evident during early and late tillering growth stages, with decreased responses towards maturity. Although average yields varied between cropping seasons (0.881 to 3.261 t ha−1) due to climatic conditions, significant exponential response patterns between yield and fertilizer P applications existed. Optimum yields were achieved with P applications of 10 to 15 kg P ha−1. The recovery of fertilizer P in the grain decreased with increasing P applications. Results of soil P analyses and calculated P balance indicated a more rapid increase in soil P content with application of fertilizer P at levels above 20 kg P ha−1, with gradual increases occurring at lower levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Five field experiments involving P application rates from 0 to 66 kg P ha–1 were conducted on irrigated wheat at Tandojam, Pakistan. The soils belonged to two great soil groups, Torrifluvent and Camborthid. All soils were calcareous. Olsen-P contents ranged from 3.5 to 6.3 mg P kg–1. Phosphate sorption curves were developed for soils from control (no P) plots at each site. Concentrations of P in solution established by fertilization in the field as estimated from the sorption curves ranged from 0.008 to 0.16mg P L–1. Actual grain yields were converted to relative grain yields and plotted against corresponding concentrations of P in solution. Yield response to P application was obtained in each experiment. Control plot yields ranged from 57 to 89% of maximum yield of respective experiments. Phosphorus requirements of wheat were 0.032 mg L–1 for 95% yield as determined from a composite yield response curve. Predicted quantities of P required to attain 0.032 mg P L–1 ranged from 18 to 29 kg P ha–1. The results of the study suggest that the P sorption approach can be used as a rational basis for making P fertilizer recommendations for various soil-crop combinations.  相似文献   

17.
A field experiment was conducted for 6 growing seasons on a Paleudult to assess the influence of P rate and frequency on crop yield and P fractions in a maize-cowpea sequential cropping system. Although cropping depleted soil organic P by up to 42.1% over the cropping seasons perhaps through mineralisation, the major portion of added P and mineralised P were not utilised by the crops. Transformations were probably more to the insoluble Fe-P than Al.P. Cumulative recovery of P in maize and cowpea was never above 75% at a single application of 30kg P ha–1 over a period of 6 seasons while cumulative recovery of annually applied P ranged from 17.1 to 31.8% over the same period. Lower values were recorded for seasonally applied P plots. Annual application of P at 30kg ha–1 kept the available P above the critical level and maintained maize and cowpea yields at near maximum over the cropping periods.  相似文献   

18.
The quantities of nitrogen, phosphorus and potassium supplied by an average African soil cleared from bush fallow, assuming no losses, were approximated. Values ranged from 23 to 120 Kg N ha–1, 1.8 to 12 Kg P ha–1, 47 to 187 Kg K ha–1, depending on type of fallow, length of fallow, drainage and extent of depletion of native supplies. Additional amounts of 4 to 5 Kg N ha–1, 4 to 6 Kg P ha–1 and 14 to 20 Kg K ha–1 are obtained from the ash.Using crop nutrient removal data and approximate efficiencies of native and fertilizer N, P and K, fertilizer requirements at the reconnaissance level were estimated for selected target yields. For newly cleared uplands at cropping/fallow ratio of 2:7, N fertilizer requirements for cassava (30 t ha–1), maize (4 t ha–1), and sweet potato (16 t ha–1), were 138, 98, 42 kg ha–1 respectively. Wetland rice (4 t ha–1) required 55 kg N ha–1. Corresponding P fertilizer requirements for cassava, maize, sweet potato, upland rice (1.5 t ha–1) and ground-nut (1 t ha–1) were 190, 80, 30, 30 and 16 kg P ha–1 respectively. Wetland rice required 83 kg P ha–1. Substantial residual values of applied P are to be expected. Cassava required 60 kg ha–1 of K on newly cleared land. In soils of lowered nutrient status higher N, P, and K fertilizer requirements were indicated for all crops.Land use data from Sierra Leone were used to illustrate how the total quantities of N, P and K fertilizers in a country in the forest zone of Africa can be approximated. Fertilizer needs in Sierra Leone were in decreasing order P > N K. N, P and K requirements were estimated to be 10,000 t, 20,000 t and 4,000 t respectively. The nutrient balance sheet method described in this paper is a useful tool to estimate the order of magnitude of fertilizer requirement at selected target yields for countries in Africa.  相似文献   

19.
Effects of rate and placement of phosphate and potassium fertilizers was studied using a 4-year rotation of corn (Zea mays L.), soybeans (Glycine max L.), wheat (Triticum vulgare L.) and hay (later changed to corn). Yields increased with increased P until 22 kg P ha–1 yr–1 was applied. Yields increased with increased K applications to 140 kg K ha–1 yr–1. Broadcast P applications gave high yields than row applications. Crop response to P was affected more by soil P level than by application to the specific crop. Residual effect from K fertilizer applications did not last as long as the residual effect from P application. Soil tests for available P were closely correlated with rate of P application over the 25-year period. Soil tests for P were higher where P was banded where P was broadcast indicating less tie-up of P by the soil where less mixing occurred.Journal Paper No. 7910, Purdue University Agricultural Experiment Station.  相似文献   

20.
Intercropping perennials with corn has the potential to improve utilization of the growing season over monocropping corn in regions where a substantial portion of the growing season is too cool for corn growth. The biomass potential and fertilizer N requirements of monocropped corn (Zea mays) grown using conventional tillage were compared with those of corn intercropped with alfalfa (Medicago sativa) in 1987 and 1988. The intercropped alfalfa was harvested once prior to planting the corn each spring. Rotation effects on and N fertilizer requirements for monocropped corn following these treatments and also following monocropped alfalfa, were evaluated in 1989 and 1990. During the two years of intercropping for which data is presented, the critical intercropped corn biomass (13.05 Mg ha–1) estimated using a quadratic-plus plateau model, was close to the monocropped corn biomass (13.01 Mg ha–1), but an estimated 83 kg ha–1 more N was required for intercropped corn to reach the critical biomass. Total biomass (intercropped corn and alfalfa) was 25% greater than that of the monocropped corn, and the total N uptake was 55% greater than that by monocropped corn over the two- year period. After rotation to monocropped corn using conventional tillage in 1989, corn biomass averaged over N rates following intercropping or monocropped corn was lower (P=0.01) than following monocropped alfalfa. Critical corn biomass estimated was highest following alfalfa and lowest following monocropped corn, and more N fertilizer was required to attain the critical biomass under continuous monocropped corn in 1989. Corn yields and N uptake values in 1990 were not significantly different among the cropping systems. The N fertilizer replacement values due to intercropping decreased from above 90 kg N ha–1 in the first year of rotation to less than 40 kg N ha–1 in the second year of rotation. Considering the higher potential for total biomass production and rotation benefit, intercropping is a viable alternative to conventional corn monoculture for forage production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号