共查询到20条相似文献,搜索用时 10 毫秒
1.
Blood flow to the retina and optic nerve remains constant over a range of elevated intraocular pressure or mean arterial pressure, independent of sympathetic activation (pressure autoregulation). In addition, increased metabolic activity in these tissues proportionally increases blood flow (metabolic autoregulation). At constant metabolic rate, altered arterial oxygen content reciprocally alters blood flow, leaving total oxygen delivery constant, while blood flow rises and falls with the arterial carbon dioxide tension. These responses are similar to those of the cerebral circulation. However, while aging, atherosclerosis, arterial hypotension, and individual variation may profoundly alter blood flow regulation and predispose to the development of illness, these factors remain largely unexplored. 相似文献
2.
Blood flow is a critical parameter for obtaining satisfactory temperature distributions during clinical hyperthermia. This study examines the changes in blood flow distribution in normal porcine skeletal muscle before, during and after a period of regional microwave hyperthermia. The baseline blood flow distribution during general anaesthesia and after the insertion of the thermal probes was established independently in order to isolate the changes due to hyperthermia. General anaesthesia alone and thermocouple insertion during anesthesia had no significant effect on the muscle blood flow distribution. Regional microwave heating generated a non-uniform blood flow distribution which was a function of the tissue temperature distribution. Blood flow was greater in those tissues samples in which higher temperatures were recorded and less in those sampled further from the applicators peak SAR (Specific Absorption Rate). The increase in blood flow appears to be primarily a local phenomenon. Although muscle blood flow may be considered to be uniform prior to heating, this does not hold during hyperthermia treatment. Therefore, the non-uniform nature of the blood distribution during heating should be incorporated into any practical bioheat transfer model. 相似文献
3.
In asthmatic and control subjects, we examined the changes in ventilatory capacity (VECap), end-expiratory lung volume (EELV), and degree of flow limitation during three types of exercise: 1) incremental, 2) constant load (50% of maximal exercise capacity; 36 min), and 3) interval (alternating between 60 and 40% of maximal exercise capacity; 6-min workloads for 36 min). The VECap and degree of flow limitation at rest and during the various stages of exercise were estimated by aligning the tidal breathing flow-volume (F-V) loops within the maximal expiratory F-V (MEFV) envelope using the measured EELV. In contrast to more usual estimates of VECap (i.e., maximal voluntary ventilation and forced expiratory volume in 1 s x 40), the calculated VECap depended on the existing bronchomotor tone, the lung volume at which the subjects breathed (i.e., EELV), and the tidal volume. During interval and constant-load exercise, asthmatic subjects experienced reduced ventilatory reserve, higher degrees of flow limitation, and had higher EELVs compared with nonasthmatic subjects. During interval exercise, the VECap of the asthmatic subjects increased and decreased with variations in minute ventilation, due in part to alterations in their MEFV curve as exercise intensity varied between 60 and 49% of maximal capacity. In conclusion, asthmatic subjects have a more variable VECap and reduced ventilatory reserve during exercise compared with nonasthmatic subjects. The variations in VECap are due in part to a more labile MEFV curve secondary to changes in bronchomotor tone. Asthmatics defend VECap and minimize flow limitation by increasing EELV. 相似文献
4.
The purpose of this study was to determine whether reduction in apparent muscle O2 diffusing capacity (Dmo2) calculated during reduced blood flow conditions in maximally working muscle is a reflection of alterations in blood flow distribution. Isolated dog gastrocnemius muscle (n = 6) was stimulated for 3 min to achieve peak O2 uptake (VO2) at two levels of blood flow (controlled by pump perfusion): control (C) conditions at normal perfusion pressure (blood flow = 111 +/- 10 ml.100 g-1.min-1) and reduced blood flow treatment [ischemia (I); 52 +/- 6 ml.100 g-1.min-1]. In addition, maximal vasodilation was achieved by adenosine (A) infusion (10(-2)M) at both levels of blood flow, so that each muscle was subjected randomly to a total of four conditions (C, CA, I, and IA; each separated by 45 min of rest). Muscle blood flow distribution was measured with 15-microns-diameter colored microspheres. A numerical integration technique was used to calculate Dmo2 for each treatment with use of a model that calculates O2 loss along a capillary on the basis of Fick's law of diffusion. Peak VO2 was reduced significantly (P < 0.01) with ischemia and was unchanged by adenosine infusion at either flow rate (10.6 +/- 0.9, 9.7 +/- 1.0, 6.7 +/- 0.2, and 5.9 +/- 0.8 ml.100 g-1.min-1 for C, CA, I, and IA, respectively). Dmo2 was significantly lower by 30-35% (P < 0.01) when flow was reduced (except for CA vs. I; 0.23 +/- 0.03, 0.20 +/- 0.02, 0.16 +/- 0.01, and 0.13 +/- 0.01 ml.100 g-1.min-1.Torr-1 for C, CA, I, and IA, respectively). As expressed by the coefficient of variation (0.45 +/- 0.04, 0.47 +/- 0.04, 0.55 +/- 0.03, and 0.53 +/- 0.04 for C, CA, I, and IA, respectively), blood flow heterogeneity per se was not significantly different among the four conditions when examined by analysis of variance. However, there was a strong negative correlation (r = 0.89, P < 0.05) between Dmo2 and blood flow heterogeneity among the four conditions, suggesting that blood flow redistribution (likely a result of a decrease in the number of perfused capillaries) becomes an increasingly important factor in the determination of Dmo2 as blood flow is diminished. 相似文献
5.
MC Hogan LB Gladden B Grassi CM Stary M Samaja 《Canadian Metallurgical Quarterly》1998,84(6):1882-1888
The purpose of this study was to examine the bioenergetics and regulation of O2 uptake (VO2) and force production in contracting muscle when blood flow was moderately reduced during a steady-state contractile period. Canine gastrocnemius muscle (n = 5) was isolated, and 3-min stimulation periods of isometric, tetanic contractions were elicited sequentially at rates of 0.25, 0.33, and 0.5 contractions/s (Hz) immediately followed by a reduction of blood flow [ischemic (I) condition] to 46 +/- 3% of the value obtained at 0.5 Hz with normal blood flow. The VO2 of the contracting muscle was significantly (P < 0.05) reduced during the I condition [6.5 +/- 0.8 (SE) ml . 100 g-1 . min-1] compared with the same stimulation frequency with normal flow (11.2 +/- 1.5 ml . 100 g-1 . min-1), as was the tension-time index (79 +/- 12 vs. 123 +/- 22 N . g-1 . min-1, respectively). The ratio of VO2 to tension-time index remained constant throughout all contraction periods. Muscle phosphocreatine concentration, ATP concentration, and lactate efflux were not significantly different during the I condition compared with the 0. 5-Hz condition with normal blood flow. However, at comparable rates of VO2 and tension-time index, muscle phosphocreatine concentration and ATP concentration were significantly less during the I condition compared with normal-flow conditions. These results demonstrate that, in this highly oxidative muscle, the normal balance of O2 supply to force output was maintained during moderate ischemia by downregulation of force production. In addition, 1) the minimal disruption in intracellular homeostasis after the initiation of ischemia was likely a result of steady-state metabolic conditions having already been activated, and 2) the difference in intracellular conditions at comparable rates of VO2 and tension-time index between the normal flow and I condition may have been due to altered intracellular O2 tension. 相似文献
6.
1. An investigation was carried out in five healthy lean adults to assess whether forearm and calf plethysmography largely reflect muscle blood flow as measured by 133Xe and whether there is substantial variability in the blood flow to muscles located at different sites in the body. 2. Blood flow to forearm and calf flexors and extensors, biceps, triceps and quadriceps was assessed using the 133Xe clearance technique. Blood flow to forearm skin and subcutaneous adipose tissue was also measured using the 133Xe clearance technique, whereas blood flow to the forearm and calf was measured using strain gauge plethysmography. 3. The mean blood flow to different muscles ranged from 1.4 +/- 0.6 (gastrocnemius) to 1.8 +/- 0.7 (forearm extensor) ml min-1 100 g-1 muscle (1.4 +/- 0.6 and 1.9 +/- 0.8 ml min-1 100 ml-1 muscle, respectively) but there were no significant differences between them. Forearm and calf blood flows (2.7 +/- 0.3 and 3.0 +/- 0.7 ml min-1 100 ml-1 limb tissue, respectively) were about 50% to more than 100% greater (P < 0.025) than blood flow to the muscles within them (1.7 +/- 0.5 and 1.4 +/- 0.5 ml min-1 100 g-1 muscle, respectively, or 1.8 +/- 0.6 and 1.5 +/- 0.5 ml min-1 100 ml-1 muscle, respectively). In contrast, the blood flows to 100 g of forearm skin (9.1 +/- 2.6 ml min-1 100 g-1) and adipose tissue (3.8 +/- 1.1 ml min-1 100 g-1) were higher than the blood flow to 100 g of forearm (P < 0.01 and not significant, respectively).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
During eccentrically biased exercise (e.g., downhill locomotion), whole body oxygen consumption and blood lactate concentrations are lower than during level locomotion. These general systemic measurements indicate that muscle metabolism is lower during downhill exercise. This study was designed to test the hypothesis that hindlimb muscle blood flow is correspondingly lower during downhill vs. level exercise. Muscle blood flow (determined by using radioactive microspheres) was measured in rats after 15 min of treadmill exercise at 15 m/min on the level (L, 0 degrees) or downhill (D, -17 degrees). Blood flow to ankle extensor muscles was either lower (e.g., white gastrocnemius muscle: D, 9 +/- 2; L, 15 +/- 1 ml. min-1. 100 g-1) or not different (e.g., soleus muscle: D, 250 +/- 35; L, 230 +/- 21 ml. min-1. 100 g-1) in downhill vs. level exercise. In contrast, blood flow to ankle flexor muscles was higher (e.g., extensor digitorum longus muscle: D, 53 +/- 5; L, 31 +/- 6 ml. min-1. 100 g-1) during downhill vs. level exercise. When individual extensor and flexor muscle flows were summed, total flow to the leg was lower during downhill exercise (D, 3.24 +/- 0.08; L, 3.47 +/- 0. 05 ml/min). These data indicate that muscle blood flow and metabolism are lower during eccentrically biased exercise but are not uniformly reduced in all active muscles; i.e., flows are equivalent in several ankle extensor muscles and higher in ankle flexor muscles. 相似文献
8.
CA Harms MA Babcock SR McClaran DF Pegelow GA Nickele WB Nelson JA Dempsey 《Canadian Metallurgical Quarterly》1997,82(5):1573-1583
We hypothesized that during exercise at maximal O2 consumption (VO2max), high demand for respiratory muscle blood flow (Q) would elicit locomotor muscle vasoconstriction and compromise limb Q. Seven male cyclists (VO2max 64 +/- 6 ml.kg-1.min-1) each completed 14 exercise bouts of 2.5-min duration at VO2max on a cycle ergometer during two testing sessions. Inspiratory muscle work was either 1) reduced via a proportional-assist ventilator, 2) increased via graded resistive loads, or 3) was not manipulated (control). Arterial (brachial) and venous (femoral) blood samples, arterial blood pressure, leg Q (Qlegs; thermodilution), esophageal pressure, and O2 consumption (VO2) were measured. Within each subject and across all subjects, at constant maximal work rate, significant correlations existed (r = 0.74-0.90; P < 0.05) between work of breathing (Wb) and Qlegs (inverse), leg vascular resistance (LVR), and leg VO2 (VO2legs; inverse), and between LVR and norepinephrine spillover. Mean arterial pressure did not change with changes in Wb nor did tidal volume or minute ventilation. For a +/-50% change from control in Wb, Qlegs changed 2 l/min or 11% of control, LVR changed 13% of control, and O2 extraction did not change; thus VO2legs changed 0.4 l/min or 10% of control. Total VO2max was unchanged with loading but fell 9.3% with unloading; thus VO2legs as a percentage of total VO2max was 81% in control, increased to 89% with respiratory muscle unloading, and decreased to 71% with respiratory muscle loading. We conclude that Wb normally incurred during maximal exercise causes vasoconstriction in locomotor muscles and compromises locomotor muscle perfusion and VO2. 相似文献
9.
Regional limb blood flow has been measured with dilution techniques (cardio-green or thermodilution) and ultrasound Doppler. When applied to the femoral artery and vein at rest and during dynamical exercise these methods give similar reproducible results. The blood flow in the femoral artery is approximately 0.3 L min(-1) at rest and increases linearly with dynamical knee-extensor exercise as a function of the power output to 6-10 L min[-1] (Q= 1.94 + 0.07 load). Considering the size of the knee-extensor muscles, perfusion during peak effort may amount to 2-3 L kg(-1) min(-1), i.e. approximately 100-fold elevation from rest. The onset of hyperaemia is very fast at the start of exercise with T 1/2 of 2-10 s related to the power output with the muscle pump bringing about the very first increase in blood flow. A steady level is reached within approximately 10-150 s of exercise. At all exercise intensities the blood flow fluctuates primarily due to the variation in intramuscular pressure, resulting in a phase shift with the pulse pressure as a superimposed minor influence. Among the many vasoactive compounds likely to contribute to the vasodilation after the first contraction adenosine is a primary candidate as it can be demonstrated to (1) cause a change in limb blood flow when infused i.a., that is similar in time and magnitude as observed in exercise, and (2) become elevated in the interstitial space (microdialysis technique) during exercise to levels inducing vasodilation. NO appears less likely since NOS blockade with L-NMMA causing a reduced blood flow at rest and during recovery, it has no effect during exercise. Muscle contraction causes with some delay (60 s) an elevation in muscle sympathetic nerve activity (MSNA), related to the exercise intensity. The compounds produced in the contracting muscle activating the group IIl-IV sensory nerves (the muscle reflex) are unknown. In small muscle group exercise an elevation in MSNA may not cause vasoconstriction (functional sympatholysis). The mechanism for functional sympatholysis is still unknown. However, when engaging a large fraction of the muscle mass more intensely during exercise, the MSNA has an important functional role in maintaining blood pressure by limiting blood flow also to exercising muscles. 相似文献
10.
DA Oelberg AB Evans MI Hrovat PP Pappagianopoulos S Patz DM Systrom 《Canadian Metallurgical Quarterly》1998,84(2):676-682
To determine whether skeletal muscle hydrogen ion mediates ventilatory drive in humans during exercise, 12 healthy subjects performed three bouts of isotonic submaximal quadriceps exercise on each of 2 days in a 1.5-T magnet for 31P-magnetic resonance spectroscopy (31P-MRS). Bilateral lower extremity positive pressure cuffs were inflated to 45 Torr during exercise (BLPPex) or recovery (BLPPrec) in a randomized order to accentuate a muscle chemoreflex. Simultaneous measurements were made of breath-by-breath expired gases and minute ventilation, arterialized venous blood, and by 31P-MRS of the vastus medialis, acquired from the average of 12 radio-frequency pulses at a repetition time of 2.5 s. With BLPPex, end-exercise minute ventilation was higher (53.3 +/- 3.8 vs. 37.3 +/- 2.2 l/min; P < 0.0001), arterialized PCO2 lower (33 +/- 1 vs. 36 +/- 1 Torr; P = 0.0009), and quadriceps intracellular pH (pHi) more acid (6.44 +/- 0.07 vs. 6.62 +/- 0.07; P = 0.004), compared with BLPPrec. Blood lactate was modestly increased with BLPPex but without a change in arterialized pH. For each subject, pHi was linearly related to minute ventilation during exercise but not to arterialized pH. These data suggest that skeletal muscle hydrogen ion contributes to the exercise ventilatory response. 相似文献
11.
S Yan P Sliwinski AP Gauthier I Lichros S Zakynthinos PT Macklem 《Canadian Metallurgical Quarterly》1993,75(3):1371-1377
We evaluated the effect of global inspiratory muscle fatigue on ventilation and respiratory muscle control during CO2 rebreathing in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. CO2 response curves were measured before and after fatigue. During CO2 rebreathing, global fatigue caused a decreased tidal volume (VT) and an increased breathing frequency but did not change minute ventilation, duty cycle, or mean inspiratory flow. Both esophageal and transdiaphragmatic pressure swings were significantly reduced after global fatigue, suggesting decreased contribution of both rib cage muscles and diaphragm to breathing. End-expiratory transpulmonary pressure for a given CO2 was lower after fatigue, indicating an additional decrease in end-expiratory lung volume due to expiratory muscle recruitment, which leads to a greater initial portion of inspiration being passive. This, combined with the reduction in VT, decreased the fraction of VT attributable to inspiratory muscle contribution; therefore the inspiratory muscle elastic work and power per breath were significantly reduced. We conclude that respiratory control mechanisms are plastic and that the respiratory centers alter their output in a manner appropriate to the contractile state of the respiratory muscles to conserve the ventilatory response to CO2. 相似文献
12.
A Salmi J Ahovuo E Tukiainen M H?rm? S Asko-Seljavaara 《Canadian Metallurgical Quarterly》1995,16(9):601-605
The purpose of this study was to investigate the common belief that a microvascular transfer of a non-innervated free muscle flap loses muscle bulk over time. Sixteen patients (latissimus dorsi = 8, rectus abdominis = 7, and gracilis muscle = 1) were evaluated an average of 41 months after free flap transfer. Latissimus dorsi and lower extremity flaps displayed significantly more swelling than the other flaps. Flap bulk was measured by ultrasound. The mean thickness of upper extremity flaps was 10.3 +/- 1.8 mm (control muscles 11.8 +/- 2.8), lower-extremity 14.5 +/- 3.7 mm (control muscles 10.9 +/- 0.7), latissimus dorsi 14.3 +/- 2.2 mm (control muscles 10.3 +/- 0.8, P = 0.018), and rectus abdominis 11.2 +/- 1.2 mm (control muscles 12.4 +/- 1.9). Color Doppler ultrasonography was used to detect the pedicles of the free flaps and also to measure the peak velocity of blood flow intramuscularly and in the pedicles. In the upper extremities (n = 5) the pedicles could be found in only 20% of cases whereas in the lower extremities (n = 11) 91% of pedicles were located. (P = 0.013). Peak flow within the free flaps was significantly higher in the lower extremity (50% of the peak flow of the common femoral artery) than in the upper extremity (5% of the peak flow of the common femoral artery, P = 0.013). This study demonstrated that non-innervated free muscle flaps in the extremities maintain the original muscle thickness, although lower extremity and latissimus dorsi flaps have a trend to be thicker. Most pedicles of free muscle flaps in the upper extremities could not be located by ultrasound. However, flaps in the lower extremities most often have patent pedicles and also more vigorous intramuscular blood flow. 相似文献
13.
14.
RL Hughson JK Shoemaker ME Tschakovsky JM Kowalchuk 《Canadian Metallurgical Quarterly》1996,81(4):1619-1626
The hypothesis that the rate of increase in muscle O2 uptake (VO2mus) at the onset of exercise is influenced by muscle blood flow was tested during forearm exercise with the arm either above or below heart level to modify perfusion pressure. Ten young men exercised at a power of approximately 2.2 W, and five of these subjects also worked at 1.4 W. Blood flow to the forearm was calculated from the product of blood velocity and cross-sectional area obtained with Doppler techniques. Venous blood was sampled from a deep forearm vein to determine O2 extraction. The rate of increase in VO2mus and blood flow was assessed from the mean response time (MRT), which is the time to achieve approximately 63% increase from baseline to steady state. In the arm below heart position during the 2.2-W exercise, blood flow and VO2mus both increased, with a MRT of approximately 30 s. With the arm above the heart at this power, the MRTs for blood flow [79.8 +/- 15.7 (SE)s] and VO2mus (50.2 +/- 4.0 s) were both significantly slower. Consistent with these findings were the greater increases in venous plasma lactate concentration over resting valued in the above heart position (2.8 +/- 0.4 mmol/l) than in the below heart position (0.9 +/- mmol/l). At the lower power, both blood flow and VO2mus also increased more rapidly with the arm below compared with above the heart. These data support the hypothesis that changes in blood flow at the onset of exercise have a direct effect on oxidative metabolism through alterations in O2 transport. 相似文献
15.
AD Sandler C Schmidt K Richardson J Murray JW Maher 《Canadian Metallurgical Quarterly》1993,114(2):285-93; discussion 293-4
BACKGROUND: An increase in esophageal mucosal blood flow (MBF) may be an important protective mechanism against mucosal injury from noxious agents that are ingested or refluxed. This study investigated the changes in MBF and the regulation thereof after intraluminal application of noxious chemical stimuli. The role, if any, of substance P (SP) and nitric oxide (NO), two potent vasodilatory substances, and the vascular distribution of SP in the distal esophagus were evaluated. METHODS: Esophageal MBF was measured in anesthetized dogs with a laser Doppler flow probe attached to manometry and pH probes. MBF was measured before and after topical application of HCl (2 ml; 1N) or capsaicin (2 ml; 0.5%) in the distal esophagus. The effects on MBF of intraarterial SP and bradykinin were also determined. Pharmacologic antagonists and denervation procedures were used to delineate the mechanisms that regulate MBF. RESULTS: Sequential luminal applications of hydrochloric acid (HCl) or a single application of capsaicin increased MBF (p < 0.01). Topical intraluminal lidocaine blocked the response to capsaicin (p > 0.2) but not to HCl (p < 0.05). Abrupt increases in MBF occurred with intraarterial SP or bradykinin (p < 0.01). Neither atropine nor truncal vagotomy blocked the increase in MBF from these peptides or noxious stimuli. The NO synthesis antagonist NG-nitro-L-arginine methyl ester (L-NAME) blocked the response to bradykinin and attenuated the response to HCl (p < 0.05). NG-nitro-L-arginine methyl ester did not affect the response to SP or capsaicin. A substance P antagonist blocked the effects of both capsaicin (p > 0.6) and SP (p > 0.1) but not that of HCl (p < 0.01) or bradykinin (p > 0.01). CONCLUSIONS: Intraluminal applications of HCl or capsaicin appear to stimulate increases in esophageal MBF by different mechanisms. HCl produces an adaptive response that appears dependent on the paracrine effect of NO. Capsaicin-sensitive neurons mediate vasodilation through SP neurotransmission, independent of extrinsic vagal or cholinergic innervation. 相似文献
16.
The present study compared the microdialysis ethanol outflow-inflow technique for estimating blood flow (BF) in skeletal muscle of humans with measurements by Doppler ultrasound of femoral artery inflow to the limb (BFFA). The microdialysis probes were inserted in the vastus lateralis muscle and perfused with a Ringer acetate solution containing ethanol, [2-3H]adenosine (Ado), and D-[14C(U)]glucose. BFFA at rest increased from 0.16 +/- 0.02 to 1.80 +/- 0.26 and 4.86 +/- 0.53 l/min with femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 microg . min-1 . l-1 thigh volume (low dose and high dose, respectively; P < 0.05) and to 3.79 +/- 0.37 and 6.13 +/- 0.65 l/min during one-legged, dynamic, thigh muscle exercise without and with high AdoFA,i, respectively (P < 0.05). The ethanol outflow-to-inflow ratio (38.3 +/- 2.3%) and the probe recoveries (PR) for [2-3H]Ado (35.4 +/- 1.6%) and for D-[14C(U)]glucose (15.9 +/- 1.1%) did not change with AdoFA,i at rest (P = not significant). During exercise without and with AdoFA,i, the ethanol outflow-to-inflow ratio decreased (P < 0.05) to a similar level of 17.5 +/- 3.4 and 20.6 +/- 3.2%, respectively (P = not significant), respectively, while the PR increased (P < 0.05) to a similar level (P = not significant) of 55.8 +/- 2.8 and 61.2 +/- 2. 5% for [2-3H]Ado and to 42.8 +/- 3.9 and 45.2 +/- 5.1% for D-[14C(U)]glucose. Whereas the ethanol outflow-to-inflow ratio and PR correlated inversely and positively, respectively, to the changes in BF during muscular contractions, neither of the ratio nor PR correlated to the AdoFA,i-induced BF increase. Thus the ethanol outflow-to-inflow ratio does not represent skeletal muscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane. 相似文献
17.
S Egginton O Hudlická MD Brown H Walter JB Weiss A Bate 《Canadian Metallurgical Quarterly》1998,85(6):2025-2032
Rat extensor digitorum longus muscles were overloaded by stretch after removal of the synergist tibialis anterior muscle to determine the relationship between capillary growth, muscle blood flow, and presence of growth factors. After 2 wk, sarcomere length increased from 2.4 to 2.9 micrometers. Capillary-to-fiber ratio, estimated from alkaline phosphatase-stained frozen sections, was increased by 33% (P < 0.0001) and 60% (P < 0.01), compared with control muscles (1.44 +/- 0.06) after 2 and 8 wk, respectively. At 2 wk, the increased capillary-to-fiber ratio was not associated with any changes in mRNA for basic fibroblast growth factor (FGF-2) or its protein distribution. FGF-2 immunoreactivity was present in nerves and large blood vessels but was negative in capillaries, whereas the activity of low-molecular endothelial-cell-stimulating angiogenic factor (ESAF) was 50% higher in stretched muscles. Muscle blood flows measured by radiolabeled microspheres during contractions were not significantly different after 2 or 8 wk (132 +/- 37 and 177 +/- 22 ml. min-1. 100 g-1, respectively) from weight-matched controls (156 +/- 12 and 150 +/- 10 ml. min-1. 100 g-1, respectively). Resistance to fatigue during 5-min isometric contractions (final/peak tension x 100) was similar in 2-wk overloaded and contralateral muscles (85 vs. 80%) and enhanced after 8 wk to 92%, compared with 77% in contralateral muscles and 67% in controls. We conclude that increased blood flow cannot be responsible for initiating expansion of the capillary bed, nor does it explain the reduced fatigue within overloaded muscles. However, stretch can present a mechanical stimulus to capillary growth, acting either directly on the capillary abluminal surface or by upregulating ESAF, but not FGF-2, in the extracellular matrix. 相似文献
18.
Techniques which are currently used to measure skeletal muscle blood flow (SMBF) in patients with congestive heart failure (CHF) are neither convenient nor accurate. They have led to discrepant results in patients with congestive heart failure and are, in part, responsible for the ongoing debate regarding the factors which limit the rise in body oxygen consumption during exercise in these patients. However, direct measurement of SMBF may not be needed during exercise in patients with severe CHF. Their skeletal muscles maximally extract oxygen. Consequently, increase in oxygen consumption by the skeletal muscles is only mediated by a concomitant increase in SMBF. In patients with severe CHF, peak body oxygen consumption attained during maximal exercise closely depends on the rise in SMBF, and thus provides an indirect measurement of SMBF. 相似文献
19.
20.
AJ McMahon JN Baxter W Murray CW Imrie G Kenny PJ O'Dwyer 《Canadian Metallurgical Quarterly》1994,81(7):1033-1036
Laparoscopic cholecystectomy with carbon dioxide pneumoperitoneum may result in hypercarbia and acidosis in patients with cardiorespiratory disease. The aim of the present study was to assess helium as an alternative to carbon dioxide for creating the pneumoperitoneum. Ventilation requirements and carbon dioxide levels were assessed at the beginning and end of laparoscopic cholecystectomy using helium (n = 30) and carbon dioxide (n = 30) pneumoperitoneum. Insufflation with helium did not result in an increase in ventilation requirement although, like carbon dioxide pneumoperitoneum, it was associated with a mean rise in peak airway pressure (of 7 cmH2O; P < 0.001). There was also a 3.2-kPa increase in the alveolar-arterial oxygen gradient with helium (P = 0.006). Carbon dioxide pneumoperitoneum was associated with a significant rise in arterial carbon dioxide levels, despite increasing ventilation. Four patients with helium pneumoperitoneum had surgical emphysema for 5 days. Helium may be a suitable alternative to carbon dioxide for creating pneumoperitoneum in patients with severe cardiorespiratory disease. However, because of its low water solubility helium has a lower safety margin than carbon dioxide in the rare event of gas embolism. 相似文献