首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  相似文献   

2.
Epitaxial growth of a highly strained, coherent SiGe alloy shell around a Ge nanowire core is investigated as a method to achieve surface passivation and carrier confinement, important in realizing nanowire devices. The high photoluminescence intensity observed from the core-shell nanowires with spectral features similar to that of bulk Ge indicates effective surface passivation. Thermal stability of these core-shell heterostructures has been systematically investigated, with a method demonstrated to avoid misfit strain relaxation during postgrowth annealing.  相似文献   

3.
Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths.  相似文献   

4.
Cheng C  Wang TL  Feng L  Li W  Ho KM  Loy MM  Fung KK  Wang N 《Nanotechnology》2010,21(47):475703
We report the synthesis of vertically aligned ZnO/a-Si core-shell nanowire arrays (ZnO nanowires coated with amorphous silicon) through chemical vapor deposition. The core-shell heterostructured nanowires possessed uniform morphology and the thickness of the amorphous silicon shells could be controlled easily by tuning the deposition duration and temperature. The core-shell heterostructured nanowires exhibited enhanced antireflection and absorption performance as well as tunable PL properties. Because the individual ZnO/a-Si nanowires showed p-type characteristics and the ZnO cores were n-type semiconductors, the core-shell nanowires formed p-n junctions naturally.  相似文献   

5.
One of the most promising solution for crystalline silicon surface passivation in solar cell fabrication consists in a low temperature (< 400 °C) Plasma Enhanced Chemical Vapor Deposition of a double layer composed by intrinsic hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon nitride (SiNx). Due to the high amount of hydrogen in the gas mixture during the double layer deposition, the passivation process results particularly useful in case of multi-crystalline silicon substrates in which hydrogenation of grain boundaries is very needed. In turn the presence of hydrogen inside both amorphous layers can induce metastability effects. To evaluate these effects we have investigated the stability of the silicon surface passivation obtained by the double layer under ultraviolet light exposure. In particular we have verified that this double layer is effective to passivate both p- and n-type crystalline silicon surface by measuring minority carrier high lifetime, via photoconductance-decay. To get better inside the passivation mechanisms, strongly connected to the charge laying inside the SiNx layer, we have collected the Infrared spectra of the SiNx/a-Si:H/c-Si structures and we have monitored the capacitance-voltage profiles of Al/SiNx/a-Si:H/c-Si Metal Insulator Semiconductor structures at different stages of UltraViolet (UV) light exposure. Finally we have verified the stability of the double passivation layer applied to the front side of solar cell devices by measuring their photovoltaic parameters during the UV light exposure.  相似文献   

6.
Yu Y  Ferry VE  Alivisatos AP  Cao L 《Nano letters》2012,12(7):3674-3681
We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.  相似文献   

7.
Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ~5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.  相似文献   

8.
VLS-grown semiconductor nanowires have emerged as a viable prospect for future solar-based energy applications. In this paper, we report highly efficient charge separation and collection across in situ doped Si p-n junction nanowires with a diameter <100 nm grown in a cold wall CVD reactor. Our photoexcitation measurements indicate an internal quantum efficiency of ~50%, whereas scanning photocurrent microscopy measurements reveal effective minority carrier diffusion lengths of ~1.0 μm for electrons and 0.66 μm for holes for as-grown Si nanowires (d(NW) ≈ 65-80 nm), which are an order of magnitude larger than those previously reported for nanowires of similar diameter. Further analysis reveals that the strong suppression of surface recombination is mainly responsible for these relatively long diffusion lengths, with surface recombination velocities (S) calculated to be 2 orders of magnitude lower than found previously for as-grown nanowires, all of which used hot wall reactors. The degree of surface passivation achieved in our as-grown nanowires is comparable to or better than that achieved for nanowires in prior studies at significantly larger diameters. We suggest that the dramatically improved surface recombination velocities may result from the reduced sidewall reactions and deposition in our cold wall CVD reactor.  相似文献   

9.
Ulbricht R  Kurstjens R  Bonn M 《Nano letters》2012,12(7):3821-3827
Free-standing semiconductor nanowires on bulk substrates are increasingly being explored as building blocks for novel optoelectronic devices such as tandem solar cells. Although carrier transport properties, such as mobility and trap densities, are essential for such applications, it has remained challenging to quantify these properties. Here, we report on a method that permits the direct, contact-free quantification of nanowire carrier diffusivity and trap densities in thin (~25 nm wide) silicon nanowires-without any additional processing steps such as transfer of wires onto a substrate. The approach relies on the very different terahertz (THz) conductivity response of photoinjected carriers within the silicon nanowires from those in the silicon substrate. This allows quantifying both the picosecond dynamics and the efficiency of charge carrier transport from the silicon nanowires into the silicon substrate. Varying the excitation density allows for quantification of nanowire trap densities: for sufficiently low excitation fluences the diffusion process stalls because the majority of charge carriers become trapped at nanowire surface defects. Using a model that includes these effects, we determine both the diffusion constant and the nanowire trap density. The trap density is found to be orders of magnitude larger than the charge carrier density that would be generated by AM1.5 sunlight.  相似文献   

10.
The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.  相似文献   

11.
The performance of silicon heterojunction (SHJ) solar cells is discussed in this paper in regard to their dependence on the applied amorphous silicon layers, their thicknesses and surface morphology. The emitter system investigated in this work consists of an n-doped, hydrogenized, amorphous silicon carbide a-SiC:H(n) layer with or without a pure, hydrogenized, intrinsic, amorphous silicon a-Si:H(i) intermediate layer. All solar cells were fabricated on p-type FZ-silicon and feature a high-efficiency backside consisting of a SiO2 passivation layer and a diffused local boron back surface field, allowing us to focus only on the effects of the front side emitter system. The highest solar cell efficiency achieved within this work is 18.5%, which is one of the highest values for SHJ-solar cells using p-type substrates. A dependence of the passivation quality on the surface morphology was only observed for solar cells including an a-Si:H(i) layer. It could be shown that the fill factor suffers from a reduction due to a reduced pseudo fill factor for emitter thicknesses below 11 nm due to a lower passivation quality and/or a higher potential for shunting thorough the a-Si emitter to the crystalline wafer with the conductive indium tin oxide layer. Furthermore, the influence of a variation of the doping gas flow (PH3) during the plasma enhanced chemical vapor deposition of the doped amorphous silicon carbide a-SiC:H(n) on the solar cell current-voltage characteristic-parameter has been investigated. We could demonstrate that a-SiC:H(n) shows in principle the same dependence on PH3-flow as pure a-Si:H(n).  相似文献   

12.
The innate inverse Auger effect within bulk silicon can result in multiple carrier generation. Observation of this effect is reliant upon low high-energy photon reflectance and high-quality surface passivation. In the photovoltaics industry, metal-assisted chemical etching (MACE) to afford black silicon (b-Si) can provide a low high-energy photon reflectance. However, an industrially feasible and cheaper technology to conformally passivate the outer-shell defects of these nanowires is currently lacking. Here, a technology is introduced to infiltrate black silicon nanopores with a simple and vacuum-free organic passivation layer that affords millisecond-level minority carrier lifetimes and matches perfectly with existing solution-based processing of the MACE black silicon. Advancements such as the demonstration of an excellent passivation effect whilst also being low reflectance provide a new technological route for inverse Auger multiple carrier generation and an industrially feasible technical scheme for the development of the MACE b-Si solar cells.  相似文献   

13.
Wang B  Leu PW 《Nanotechnology》2012,23(19):194003
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we performed systematic and detailed simulation studies on the optical properties of silicon nanocone arrays as compared to nanowires arrays. Nanocone arrays were found to have significantly improved solar absorption and efficiencies over nanowire arrays. Detailed simulations revealed that nanocones have superior absorption due to reduced reflection from their smaller tip and reduced transmission from their larger base. The enhanced efficiencies of silicon nanocone arrays were found to be insensitive to tip diameter, which should facilitate their fabrication. Breaking the vertical mirror symmetry of nanowires results in a broader absorption spectrum such that overall efficiencies are enhanced. We also evaluated the electric field intensity, carrier generation and angle-dependent optical properties of nanocones and nanowires to offer further physical insight into their light trapping properties.  相似文献   

14.
Excitation of local field enhancement on silicon nanowires   总被引:1,自引:0,他引:1  
The interaction between light and reduced-dimensionality silicon attracts significant interest due to the possibilities of designing nanoscaled optical devices, highly cost-efficient solar cells, and ultracompact optoelectronic systems that are integrated with standard microelectronic technology. We demonstrate that Si nanowires (SiNWs) possessing metal-nanocluster coatings support a multiplicatively enhanced near-field light-matter interaction. Raman scattering from chemisorbed probing molecules provides a quantitative measure of the strength of this enhanced coupling. An enhancement factor of 2 orders of magnitude larger than that for the surface plasmon resonance alone (without the SiNWs) along with the attractive properties of SiNWs, including synthetic controllability of shape, indicates that these nanostructures may be an attractive and versatile material platform for the design of nanoscaled optical and optoelectronic circuits.  相似文献   

15.
Nanostructures of silicon are gradually becoming hot candidate due to outstanding capability for trapping light and improving conversion efficiency of solar cell. In this paper, silicon nanowires (SiNWs) and silicon inverted pyramid arrays (SiIPs) were introduced on surface of Gr-Si solar cell through silver and copper-catalyzed chemical etching, respectively. The effects of SiNWs and SiIPs on carrier lifetime, optical properties and efficiency of Gr-SiNWs and Gr-SiIPs solar cells were systematically analyzed. The results show that the inverted pyramid arrays have more excellent ability for balancing antireflectance loss and surface area enlargement. The power conversion efficiency (PCE) and carrier lifetime of Gr-SiIPs devices respectively increase by 62% and 34% by comparing with that of Gr-SiNWs solar cells. Finally, the Gr-SiIPs cell with PCE of 5.63% was successfully achieved through nitric acid doping. This work proposes a new strategy to introduce the inverted pyramid arrays for improving the performance of Gr-Si solar cells.  相似文献   

16.
A novel nanoplate-structured thin-film solar cell was investigated that could solve the conflict between light absorption and carrier transport in a p-type amorphous silicon carbide (a-SiC)/i-type amorphous silicon germanide (a-SiGe)/n-type amorphous silicon (a-Si) thin-film solar cell. This structure has an n-type a-Si nanoplate array on the substrate, a-SiC p-layer, and an a-SiGe i-layer which are sequentially grown along the surface of each n-type a-Si nanoplate. Under illumination by sunlight, light is absorbed along the vertical direction of the nanoplate, while the carrier transport is along the horizontal direction. The nanoplate structure may absorb most of the sunlight and provide a thinner film for the effective transport of photon-generated carriers as compared to the conventional planar structure.  相似文献   

17.
Moiz SA  Nahhas AM  Um HD  Jee SW  Cho HK  Kim SW  Lee JH 《Nanotechnology》2012,23(14):145401
A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ~4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.  相似文献   

18.
Nanoscale textured silicon and its passivation are explored by simple low-cost metal-assisted chemical etching and thermal oxidation, and large-area black silicon was fabricated both on single-crystalline Si and multicrystalline Si for solar cell applications. When the Si surface was etched by HF/AgNO(3) solution for 4 or 5 min, nanopores formed in the Si surface, 50-100 nm in diameter and 200-300 nm deep. The nanoscale textured silicon surface turns into an effective medium with a gradually varying refractive index, which leads to the low reflectivity and black appearance of the samples. Mean reflectance was reduced to as low as 2% for crystalline Si and 4% for multicrystalline Si from 300 to 1000 nm, with no antireflective (AR) coating. A black-etched multicrystalline-Si of 156 mm × 156 mm was used to fabricate a primary solar cell with no surface passivation or AR coating. Its conversion efficiency (η) was 11.5%. The cell conversion efficiency was increased greatly by using surface passivation process, which proved very useful in suppressing excess carrier recombination on the nanostructured surface. Finally, a black m-Si cell with efficiency of 15.8% was achieved by using SiO(2) and SiN(X) bilayer passivation structure, indicating that passivation plays a key role in large-scale manufacture of black silicon solar cells.  相似文献   

19.
The effect of ammonium polysulfide solution, (NH?)?S(x), on the surface passivation of p-doped InP nanowires (NWs) was investigated by micro-photoluminescence. An improvement in photoluminescence (PL) intensity from individual NWs upon passivation was used to optimize the passivation procedure using different solvents, sulfur concentrations and durations of passivation. The optimized passivation procedure gave an average of 24 times improvement in peak PL intensity. A numerical model is presented to explain the PL improvement upon passivation in terms of a reduction in surface trap density by two orders of magnitude from 1012 to 101? cm?2, corresponding to a change in surface recombination velocity from 10? to 10? cm s?1. The diameter dependence of the PL intensity is investigated and explained by the model. The PL intensity from passivated nanowires decreased to its initial (pre-passivation) value over a period of seven days in ambient air, indicating that the S passivation was unstable.  相似文献   

20.
Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号