首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对车辆智能交通最优路径问题,提出一种实时规划的蚁群算法。在该算法搜索过程中加入针对具体问题的局部搜索寻优算法,在启发函数中引入搜索方向,改进信息素更新策略,限制信息素轨迹量。利用智能交通道路模型对改进算法进行比较分析。实验结果表明,改进后的蚁群算法能够有效地解决车辆实时路径诱导问题,实现车辆实时路径诱导,具有良好的收敛性和寻优性。  相似文献   

2.
针对蚁群算法收敛速度慢、易陷入局部极值等问题,将其与知识库结合,提出了基于知识库的动态蚁群算法.知识库包括算法知识、规则知识和案例知识,存储了定性或定量的算法参数、参数选择方法和历史数据.基于知识库和问题特性,本算法产生初始状态并动态调整参数,在运行过程中根据赌轮法选择算子并适时引入扰动,在不影响搜索过程随机性的前提下较快地收敛于全局最优值.分别用本算法和其他主流算法解决TSPLIB中的Eil51和CHN144实例,比较优化性能、时间性能和鲁棒性3个指标,结果表明本算法均有明显优势.  相似文献   

3.
根据城市交通的实际情况,介绍了用蚁群算法求解城市交通行驶中车辆最优路径的方法,帮助车辆找到最优路径,从而选择车流量较少的路径行驶。  相似文献   

4.
《南昌水专学报》2019,(3):71-76
随着共享经济的发展,共享单车逐渐走进人们的生活。为解决因共享单车出行的潮汐性而导致的资源浪费和供求关系不平衡的问题,将各调度区域内车辆数量的初始值及其变化速率考虑进约束范围,并对蚁群算法改进其禁忌表的节点选取方式,使其能够适用于求解动态共享单车调度问题,最终得到一条从调度中心出发的路径,同时能够保证调度量的最大化。实验结果表明,改进后的蚁群算法相比离散差分进化算法,在精确性和执行效率上有着显著的优势,尤其是在问题规模较大的情况下。在分别运行50次的条件下,蚁群算法成功寻得最优解的次数相较于离散差分进化算法提高了94%;在寻得最优解的条件下,蚁群算法的评价次数相较于离散差分进化算法减少了65. 4%。  相似文献   

5.
针对带时间窗车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)的特点,对蚁群算法进行了改进,优化了其搜索解的能力和收敛速度,用实例证明了改进的蚁群算法对解决VRPTW的有效性.  相似文献   

6.
提出了基于混合连续蚁群(HCACO)的最优潮流(OPF)计算方法;该方法将蚁群优化算法(ACO)的正反馈特性与实数遗传算法(GA)的进化策略相结合,克服了基本蚁群算法只适用于离散问题的局限性,并提高了寻优的效率,同时采用动态调整罚函数策略,有效提高了算法的全局收敛能力和计算精度,采用优进策略,提高了算法的收敛速度.应用此算法对标准IEEE-30节点测试系统进行最优潮流计算,该算法能够更好地获得全局最优解,仿真结果表明了该算法的合理性和有效性.  相似文献   

7.
基于改进蚁群算法的移动机器人全局路径规划   总被引:3,自引:0,他引:3  
对已栅格化的机器人运动空间中的障碍物预处理,在蚁群算法原理的基础上,改进了伪随机比例规则,使蚂蚁的下一节点选择更加倾向于目标点,提高了蚂蚁的搜索效率。引入最优一最差蚂蚁思想来更新全局信息素轨迹的强度,增强搜索过程的指导性。为了防止早熟收敛现象的发生,采用最大一最小蚂蚁思想来限制信息素的强度。仿真研究表明:该算法具有高适用性和灵活性,对解决静态路径规划问题是可行的,有效的。  相似文献   

8.
基于蚁群算法的三维路径规划大多存在规划速度慢、准确度不高等问题,提出了一种基于改进启发函数和自适应修正挥发系数的蚁群算法,设计了一种新的启发函数,提高了三维路径规划的准确度;提出自适应调整挥发系数,避免搜索陷入局部最优,同时加快了算法收敛速度。最后进行了仿真实验,结果证明了该方法的可行性和有效性。  相似文献   

9.
10.
针对旅行商问题(TSP),研究了网络地理信息系统(WebGIS)中的蚁群优化算法(ACO)在其问题上的应用.为提高蚁群优化性能,采用一种空间拓扑结构与蚁群优化算法结合,并引入了局部搜索策略2-opt.在城市数目一定的情况下,改进蚁群算法能够得到所求TSP的全局最优解,与遗传算法和模拟退火算法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到一类相关的组合优化问题之中.结果表明,改进蚁群算法对于求解TSP问题效果是很明显的.  相似文献   

11.
在业已确定螺旋铣孔切削参数的前提下,孔群加工路径的优劣对加工效率有较大影响。研究TSP数学模型,应用混合改进遗传算法求解孔群加工路径优化模型,获得优化的加工路径。将3种算法基本遗传算法、蚁群算法和混合改进型遗传算法进行对比可知,本文提出的优化方法可有效缩短走刀时间。  相似文献   

12.
目前路径优化方法忽略了客户时间窗约束产生的惩罚成本,导致惩罚成本过高,无法得到最优配送路径,因此,提出基于改进蚁群算法的物流配送车辆路径优化方法.结合遗传算法完成对蚁群算法的改进,对物流配送车辆路径问题进行建模,得到路径规划问题的目标函数,并根据配送过程的实际情况和具体要求设定目标函数的约定条件,计算固定成本和变动成本...  相似文献   

13.
基于交通网中交通流参数关系模型,提出了新的状态转移概率计算公式,同时在信息素更新策略中引入交通流密度因子,使算法可以根据时变的路网信息求解车辆的最短路径;利用蚁群算法和遗传算法相结合的思想来避免基本蚁群算法在求解车辆最短路径时易陷入局部最优解的缺陷。实验仿真结果表明,改进后的蚁群算法较基本蚁群算法能准确快速地找到基于时间的最短路径,并能有效解决实际交通系统中的最短路径问题,具有一定的实际意义和参考价值。  相似文献   

14.
采用蚁群算法模拟机器人寻路的仿真实验   总被引:1,自引:0,他引:1  
蚁群算法是一种基于蚁群寻找食物这一现象,实现寻路优化的算法。通过在MATLAB中进行程序设计,实现了利用蚁群算法模拟自动寻路的计算,并进一步将程序应用于简易机器人的寻路模块,初步实现机器人的寻路优化功能。  相似文献   

15.
蚁群算法是一种新型的随机优化算法,应用蚁群算法优化机制,提出了一种基于蚁群算法的语音信号动态时间规划方法———蚁群动态时间规划算法,搜索语音信号之间匹配的一条全局最优路径,进而以此衡量语音信号之间的相似度.算法给出了蚁群状态转移概率及信息素更新方程,既利用了语音信号的全局特征又考虑了其局部信息.理论分析与仿真实验结果均证明了此方法的可行性,与传统的DTW算法相比较,其匹配结果更能体现匹配语音信号之间的相似度.  相似文献   

16.
增强蚁群算法的机器人最优路径规划   总被引:2,自引:0,他引:2  
为解决复杂环境中机器人最优路径规划问题,本文结合增强学习和人工势场法的原理,提出一种基于增强势场优化的机器人路径规划方法,引入增强学习思想对人工势场法进行自适应路径规划.再把该规划结果作为先验知识,对蚁群算法进行初始化,提高了蚁群算法的优化效率,同时克服了传统人工势场法的局部极小问题.仿真实验结果表明,该方法在复杂环境中,对机器人的路径规划效果令人满意.  相似文献   

17.
动态环境下基于改进蚁群算法的机器人路径规划研究   总被引:2,自引:0,他引:2  
针对动态复杂条件下的移动机器人路径规划问题,根据全局静态环境先验知识,提出一种改进蚁群算法。在经典蚁群算法的基础上通过调整转移概率,限定信息素强度的上下界,并引入相关策略解决死锁问题,可以避免初期规划的盲目性,增加解的多样性,提高算法的全局搜索能力,进一步减小算法早熟的可能性。在规划过程中,根据动态障碍物运行方向的变化与否,提出了相应的碰撞避免策略,并针对环境突发状况引入Follow_wall行为进行改进。仿真实验证明,该算法优于经典蚁群算法,可有效地指导移动机器人避免环境中的动态障碍物,获取无碰最优或次优路径,并能更好地适应环境的变化。  相似文献   

18.
改进的蚂蚁算法及其在暴雨强度公式参数优化中的应用   总被引:6,自引:0,他引:6  
蚂蚁算法是解决组合优化问题的一种优秀的算法,但直接用于解决连续优化问题存在很大困难。本文通过引入带可变邻域搜索项的进化策略对蚂蚁算法进行了改进,然后将改进的蚂蚁算法应用到解决暴雨强度公式的参数优化这类连续问题中,并和其它优化方法得到的优化结果进行了比较。结果表明,改进的蚂蚁算法可以成功用于暴雨强度公式的参数优化,并且在实验采用的各种优化算法优化参数得到的暴雨强度公式拟合原始数据的效果比较中只有免疫进化算法在优化过程中迭代次数和迭代规模都要大得多的情况下才和改进的蚂蚁算法差不多,而比其它的优化方法都要好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号