首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对车辆智能交通最优路径问题,提出一种实时规划的蚁群算法。在该算法搜索过程中加入针对具体问题的局部搜索寻优算法,在启发函数中引入搜索方向,改进信息素更新策略,限制信息素轨迹量。利用智能交通道路模型对改进算法进行比较分析。实验结果表明,改进后的蚁群算法能够有效地解决车辆实时路径诱导问题,实现车辆实时路径诱导,具有良好的收敛性和寻优性。  相似文献   

2.
针对蚁群算法收敛速度慢、易陷入局部极值等问题,将其与知识库结合,提出了基于知识库的动态蚁群算法.知识库包括算法知识、规则知识和案例知识,存储了定性或定量的算法参数、参数选择方法和历史数据.基于知识库和问题特性,本算法产生初始状态并动态调整参数,在运行过程中根据赌轮法选择算子并适时引入扰动,在不影响搜索过程随机性的前提下较快地收敛于全局最优值.分别用本算法和其他主流算法解决TSPLIB中的Eil51和CHN144实例,比较优化性能、时间性能和鲁棒性3个指标,结果表明本算法均有明显优势.  相似文献   

3.
根据城市交通的实际情况,介绍了用蚁群算法求解城市交通行驶中车辆最优路径的方法,帮助车辆找到最优路径,从而选择车流量较少的路径行驶。  相似文献   

4.
《南昌水专学报》2019,(3):71-76
随着共享经济的发展,共享单车逐渐走进人们的生活。为解决因共享单车出行的潮汐性而导致的资源浪费和供求关系不平衡的问题,将各调度区域内车辆数量的初始值及其变化速率考虑进约束范围,并对蚁群算法改进其禁忌表的节点选取方式,使其能够适用于求解动态共享单车调度问题,最终得到一条从调度中心出发的路径,同时能够保证调度量的最大化。实验结果表明,改进后的蚁群算法相比离散差分进化算法,在精确性和执行效率上有着显著的优势,尤其是在问题规模较大的情况下。在分别运行50次的条件下,蚁群算法成功寻得最优解的次数相较于离散差分进化算法提高了94%;在寻得最优解的条件下,蚁群算法的评价次数相较于离散差分进化算法减少了65. 4%。  相似文献   

5.
提出了基于混合连续蚁群(HCACO)的最优潮流(OPF)计算方法;该方法将蚁群优化算法(ACO)的正反馈特性与实数遗传算法(GA)的进化策略相结合,克服了基本蚁群算法只适用于离散问题的局限性,并提高了寻优的效率,同时采用动态调整罚函数策略,有效提高了算法的全局收敛能力和计算精度,采用优进策略,提高了算法的收敛速度.应用此算法对标准IEEE-30节点测试系统进行最优潮流计算,该算法能够更好地获得全局最优解,仿真结果表明了该算法的合理性和有效性.  相似文献   

6.
针对带时间窗车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)的特点,对蚁群算法进行了改进,优化了其搜索解的能力和收敛速度,用实例证明了改进的蚁群算法对解决VRPTW的有效性.  相似文献   

7.
基于改进蚁群算法的移动机器人全局路径规划   总被引:3,自引:0,他引:3  
对已栅格化的机器人运动空间中的障碍物预处理,在蚁群算法原理的基础上,改进了伪随机比例规则,使蚂蚁的下一节点选择更加倾向于目标点,提高了蚂蚁的搜索效率。引入最优一最差蚂蚁思想来更新全局信息素轨迹的强度,增强搜索过程的指导性。为了防止早熟收敛现象的发生,采用最大一最小蚂蚁思想来限制信息素的强度。仿真研究表明:该算法具有高适用性和灵活性,对解决静态路径规划问题是可行的,有效的。  相似文献   

8.
基于蚁群算法的三维路径规划大多存在规划速度慢、准确度不高等问题,提出了一种基于改进启发函数和自适应修正挥发系数的蚁群算法,设计了一种新的启发函数,提高了三维路径规划的准确度;提出自适应调整挥发系数,避免搜索陷入局部最优,同时加快了算法收敛速度。最后进行了仿真实验,结果证明了该方法的可行性和有效性。  相似文献   

9.
10.
针对旅行商问题(TSP),研究了网络地理信息系统(WebGIS)中的蚁群优化算法(ACO)在其问题上的应用.为提高蚁群优化性能,采用一种空间拓扑结构与蚁群优化算法结合,并引入了局部搜索策略2-opt.在城市数目一定的情况下,改进蚁群算法能够得到所求TSP的全局最优解,与遗传算法和模拟退火算法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到一类相关的组合优化问题之中.结果表明,改进蚁群算法对于求解TSP问题效果是很明显的.  相似文献   

11.
基于改进蚁群算法的航路规划优化方法   总被引:1,自引:0,他引:1  
航路规划优化是作战任务规划和作战筹划的重要内容之一,也是军事运筹研究的热点问题。在对兵力航路规划优化问题分析的基础上,提出了基于改进蚁群算法的兵力航路规划优化方法。仿真结果表明,改进蚁群算法有效快速收敛到较满意的结果,可以为兵力航路规划优化问题的深入研究提供一定的借鉴和参考。  相似文献   

12.
基于交通网中交通流参数关系模型,提出了新的状态转移概率计算公式,同时在信息素更新策略中引入交通流密度因子,使算法可以根据时变的路网信息求解车辆的最短路径;利用蚁群算法和遗传算法相结合的思想来避免基本蚁群算法在求解车辆最短路径时易陷入局部最优解的缺陷。实验仿真结果表明,改进后的蚁群算法较基本蚁群算法能准确快速地找到基于时间的最短路径,并能有效解决实际交通系统中的最短路径问题,具有一定的实际意义和参考价值。  相似文献   

13.
针对传统方法不能够有效的求解GIS最优路径问题,在文化算法的基础上提出了一种基于实际路况求解两地之间最优距离的蚁群优化算法.引入了表示天气、路况、驾驶员个人偏好等诸多不确定因素,并将改进的蚁群算法融入到文化算法当中,使蚁群算法具有群体空间和信仰空间并行进化的机制.群体空间采用改进的最大最小蚁群算法,从而有效的提高算法最优解的搜索能力和速度.通过模拟计算结果表明改进的算法求解实际最优路径在速度和精度上优于传统最优路径算法.  相似文献   

14.
一种用于全局优化的蚁群算法   总被引:1,自引:0,他引:1  
针对蚁群算法不太适用于连续优化问题,且在搜索过程中容易陷入局部极值的缺点,提出了一种快速全局优化的改进蚁群算法,该算法同时采用在最好解蚂蚁领域内进行搜索及将本次循环得到的最优解作为起始解的搜索方式,以扩大其搜索范围,避免其陷入局部最优。通过对3个典型函数优化问题进行测试并与其他优化算法进行比较,结果表明该改进算法不仅能应用于对连续对象的优化,同时具有良好的全局优化性能,收敛速率快,寻优精度高。  相似文献   

15.
基于改进蚁群算法对最短路径问题的分析与仿真   总被引:2,自引:0,他引:2  
使用传统蚁群算法求解图的最短路径问题时,随着节点的增加会出现搜索速度变慢且易于陷入局部最优解.针对这个问题,提出一种改进的蚁群算法,通过引入搜索方向和搜索热区机制提高算法的搜索性能.仿真实验证明:改进的蚁群算法较传统的蚁群算法具有更高搜索速度且容易得到全局最优解.  相似文献   

16.
提出了在动态环境中移动机器人的一种路径规划方法,适用于环境中同时存在已知和未知、静止和运动障碍物的复杂情况.采用栅格法建立了机器人工作空间模型,整个系统由全局路径规划和局部避碰规划两部分组成.在全局路径规划中,用改进蚁群算法规划出初步全局优化路径;局部避碰规划主要是在跟踪全局优化路径的过程中,通过基于滚动窗口的环境探测和碰撞预测,对动态障碍物实施有效的局部避碰策略,从而使机器人能够安全顺利地到达目的地.仿真实验的结果表明所述方法具有可行性.  相似文献   

17.
为保持所求得的多目标优化问题Pareto最优解的多样性,文章提出了一种新的蚁群算法。选择策略采用多信息素权重,信息素更新结合了局部信息素更新与全局信息素更新。其中,全局信息素更新采用了两个最好解。此外,通过在外部设置外部集来存储Pareto解,并将改进的算法应用在双目标TSP上。最后进行了仿真实验,结果表明新方法比NSGA-II和SPEA2更有效。  相似文献   

18.
目前路径优化方法忽略了客户时间窗约束产生的惩罚成本,导致惩罚成本过高,无法得到最优配送路径,因此,提出基于改进蚁群算法的物流配送车辆路径优化方法.结合遗传算法完成对蚁群算法的改进,对物流配送车辆路径问题进行建模,得到路径规划问题的目标函数,并根据配送过程的实际情况和具体要求设定目标函数的约定条件,计算固定成本和变动成本...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号