首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A conventional hard disk drive (HDD) spindle motor has a pulling plate to generate the axial magnetic force. However, the pulling plate consumes significant amount of iron loss due to the alternating magnetic field on the pulling plate. We propose the new design of a HDD spindle motor with pulling magnet to generate the pre-load as well as to eliminate the iron loss of the pulling plate. We also develop an optimal design methodology to minimize iron and copper losses from the spindle motor of a computer HDD while maintaining the same level of torque ripple and pulling force. The new design is optimized by the developed optimal design methodology. A metamodel is constructed from the three-dimensional finite element analysis of the magnetic field and the meta-modeling techniques, and the accuracies of the metamodels are discussed. The proposed optimal design problem is solved by the progressive quadratic approximation method. The proposed design reduces the electrical loss of the HDD spindle motor by 30.42?% while maintaining the same level of torque ripple and pulling force.  相似文献   

2.
This paper investigates the whirling, tilting and axial motions of a hard disk drive (HDD) spindle system due to manufacturing errors of fluid dynamic bearings (FDBs). HDD spindle whirls around the sleeve with tilting angle due to the centrifugal force of unbalanced mass and the gyroscopic moment of rotating spindle in addition to axial motion. The whirling, tilting and axial motions may be increased by the manufacturing errors of FDBs such as imperfect cylindricity of sleeve bore, or imperfect perpendicularity between shaft and thrust plate. They increase the disk run-out to limit memory capacity and they may result in the instability of the HDD spindle system. This paper proposes the modified Reynolds equations for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity of sleeve bore and the perpendicularity between shaft and thrust plate. Finite element method is used to solve the modified Reynolds equation to calculate the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The whirling, tilting and axial motions of the HDD spindle system are determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method. It shows that the imperfect cylindricity and perpendicularity increase the whirl radius, axial runout and tilting angle of the HDD spindle system. However, the degradation of dynamic performance due to the imperfect perpendicularity between shaft and thrust plate can be improved by allowing the other manufacturing error of the cylindricity of sleeve bore in such a way to compensate the bad effect of the imperfect perpendicularity.  相似文献   

3.
This paper investigates the magnetically induced vibration of a flexible rotating disk-spindle system and stationary stator-base due to the internal excitation of the local magnetic force arising from the spindle motor of a HDD. A three-dimensional magnetic finite element model of the spindle motor is developed, and the Maxwell stress tensor method is applied to calculate the local magnetic force acting on the stationary teeth and rotating permanent magnet of the spindle motor. Also, a three-dimensional structural finite element model is developed and local magnetic force is applied to teeth and permanent magnet. The simulated forced vibration of the base plate matched well with the measured one. The dominant frequency component of local magnetic force is the 12th harmonic corresponding to the number of poles, but the dominant frequency component of vibration is the 36th harmonic corresponding to the least common multiple of the number of poles and slots because the 12 and 24th harmonics in local force are canceled out when they are summed up along the air gap. The 12th, 24th and 36th harmonics of the axial vibration are mostly affected by the axial magnetic force, and the amplitudes of those harmonics are increased with the increase of stator eccentricity.  相似文献   

4.
This research investigates the electromechanical variables of a spindle motor and an actuator of an operating hard disk drive (HDD) due to the positioning and the free-fall of a HDD. Magnetic fields of a brushless DC motor and a voice coil motor are determined by the time-stepping finite element equation of the Maxwell equation and the driving circuit equation. The pressure of the fluid dynamic bearings (FDBs) is determined by solving the finite element equation of the Reynolds equation to calculate the reaction force and the friction torque. Dynamic equations of the rotating disk-spindle, actuator, and stationary bodies of a HDD are derived from the Newton–Euler’s equation. The speed control of the rotating disk-spindle and the servo control of the actuator are included to describe the head positioning between the rotating disk and the head. The simulation is performed to investigate the electromechanical variables of the spindle motor and the actuator due to the positioning and the free-fall of a HDD. This research shows that the positioning and the free-fall of a HDD change the electromechanical variables of the spindle motor and the actuator of an operating HDD, and that monitoring their electromechanical variables may identify the positioning and the free-fall of a HDD without using extra sensors.  相似文献   

5.
This research proposes a robust optimal design methodology to reduce the cogging torque of a hard disk drive (HDD) spindle motor due to the coil-positioning error of the magnetizer. The design optimization problem of the magnetizer is formulated with an objective function of the cogging torque and the constraints of the torque constant. The coil-positioning errors measured by computerized tomography are considered as the random variables of the robust optimal design problem. Additional design variables of the magnetizer are chosen in the optimization problem, such as back-yoke thickness, notch depth, etc. Magnetic finite element analysis of the HDD spindle motor is also performed to calculate the cogging torque and torque constant. The cogging torque and torque constant of the optimal design are compared with those of the conventional design, demonstrating that the proposed method effectively reduces the cogging toque of the HDD spindle motor.  相似文献   

6.
The purpose of this paper is to optimize OP-vibration performance of 3.5-in. hard disk drive (HDD) spindle motors through theoretical prediction and experimental verification. OP-vibration performance of HDD is closely related to the first rocking vibration of spindle motors because excited frequencies of 3.5-in. HDD from the environment are mostly below 500 Hz and the first rocking vibration is the only resonance in the corresponding frequencies. Therefore, minimizing first rocking vibration leads to improve OP-vibration performance of the spindle motors. In order to minimize the first rocking vibration key parameters of FDB spindle motors were selected from a previous work done by Heo and Shen (Microsyst Technol 11:1204–1213, 2005). Then, the selected parameters have been optimized to minimize the first rocking vibration through a theoretical model developed at University of Washington. Then, experiments with ten prototype FDB spindle motors have been conducted to verify the theoretical results. Each prototype motor has different spindle parameter configurations including bearing coefficients, bearing locations, and center of gravity location, etc. Also, this paper demonstrated that radial measurements of spindle rocking vibration have better correlation with OP-vibration performance than axial measurements through PES measurements. Finally, the optimized design has been manufactured by a motor maker and has also successfully verified the theoretical prediction experimentally.  相似文献   

7.
 This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. The proposed method makes it possible to predict the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system. Received: 20 June 2002 / Accepted: 28 August 2002  相似文献   

8.
This paper numerically and experimentally investigates the characteristics of torque ripple and unbalanced magnetic force (UMF) due to rotor eccentricity and their effects on noise and vibration in a hard disk drive (HDD) spindle motor with 12 poles and 9 slots. The major excitation frequencies of a non-operating HDD spindle system with rotor eccentricity are the least common multiples (LCM) of pole and slot numbers of the cogging torque and the harmonics of slot number ±1 of the UMF. An experimental setup is developed to measure the UMF generated by rotor eccentricity and to verify the simulated UMF. In the operating HDD spindle motor, the harmonics of the commutation frequency of torque ripple (multiplication of pole and phase) are increased by the interaction of the driving current and rotor eccentricity, and they are the same as the LCM of pole and slot numbers for a HDD spindle motor with 12 poles and 9 slots. The major excitation frequencies of the UMF while operating condition are also the harmonics of slot number ±1 and the harmonics of commutation frequency ±1. We verify that the source of the harmonics of slot number ±1 and the harmonics of commutation frequency ±1 in acoustic noise and vibration is rotor eccentricity of the UMF through experiments.  相似文献   

9.
轴向磁通永磁(Axial Flux Permanent Magnet,AFPM)电机在给转子输出周向电磁转矩的同时,还作为一种“磁轴承”,与弹性箔片轴承(Gas Foil Bearings,GFBs)并联工作.当GFBs支承的单定子单转子AFPM电机转速发生突变时(如加、减速),叶轮或者透平会产生一个瞬时轴向力.为揭示此轴向冲击对转子系统振动的影响机理,针对采用2个径向GFBs和1个轴向GFB支承的单定子单转子AFPM电机,建立了系统的刚性转子动力学方程,计入了永磁体的轴向吸力、径向回复力以及轴向GFB的推力对转子振动的影响.计算显示:轴向冲击对横向振动的影响非常小,箔片结构刚度的非线性效应会对转子振荡幅值和时间均产生影响,永磁体的负刚度绝对值越大,轴向振幅越大.在设计时,要注意永磁轴承刚度、箔片结构刚度和结构阻尼的合理匹配,以保证转子在轴向冲击下的轴向振荡时间和振幅均不超过允许值.  相似文献   

10.
This research investigates how the design variables of ball bearing affect the bearing stiffness and the natural frequencies of a hard disk drive (HDD) spindle system at elevated temperature. It shows that any design change that increases the contact angle of ball bearing reduces the variation in the bearing stiffness and the natural frequencies at elevated temperature. This research also proposes a robust HDD spindle motor in which a wave spring maintains a constant preload minimizing the effect of temperature variation. Experimental modal testing shows that the reduction of the natural frequencies at elevated temperature is much less in the proposed HDD spindle system than in the conventional spindle system. The proposed HDD spindle motor can improve the dynamic reliability of a HDD spindle system, which contributes to the high track density of a HDD.  相似文献   

11.
The acoustic level of a hard disk drive is an important specification. This is especially so for enterprise HDD which is required to operate under a high spinning speed. In order to reduce the acoustics level of a HDD, an in depth understanding behind the mechanisms whereby the noise is being generated in a HDD should be established. This paper will study the acoustics characteristics of a high speed permanent magnet brushless DC motor (PM BLDC) and investigate the physics underlying the generation of noise associated with a motor. An analysis procedure of the PM BLDC motor noise generating mechanisms is proposed. Through finite element analysis and experimental verification, the results indicate that the major noise source for the high speed PM BLDC motor is due to the presence of electromagnetic (EM) torque ripples. Furthermore, it has been observed that the noise radiated by a HDD can be amplified when its structural dynamics are close to the frequency components of the noise source. Finally, a methodology which discusses the steps involved in the prediction of motor radiated noise will be presented.  相似文献   

12.
This paper investigates the prominence discrete tone (PDT) noise originating from the driving method of a hard disk drive (HDD) spindle motor with 12 poles and 9 slots. Torque ripple of a HDD is reconstructed by the multiplication of measured back electromotive force (BEMF) and measured switching current. It shows that the frequency components of PDT noise match with those of torque ripple. It also investigates the frequency change of PDT noise due to two driving methods which have the different switching-off periods to detect the zero-crossing of the BEMF. The BEMF has odd harmonics of the number of pole pair, but the current has even harmonics of the number of pole pair due to the switching-off period as well as those odd harmonics of BEMF. We theoretically derive the torque equation in terms of the frequency components of BEMF and switching current. We also verify that the even harmonics of the driving current due to driving method generate the 54th harmonic of torque ripple, and show that the pure sinusoidal BEMF with the 6th harmonic can decrease the 36th harmonic of torque ripple as well as PDT noise in the HDD spindle systems.  相似文献   

13.
Mechanical vibration and acoustic noise are major obstacles in the development of high-density and high-spindle-speed hard disk drives. Torque ripple caused by the electrical driver is the main source of vibration and noise. This paper proposes a novel driver for spindle motors in hard disk drives based on the principle of position sensorless vector control. To reduce torque ripple, the proposed driver feeds the spindle motor in sinusoidal driving mode by which the sinusoidal current of the motor can be obtained. Experimental results of the proposed driver demonstrate the better driving performance in startup condition and fine sinusoidal current in steady state. Vibration testing shows significant improvement in the attenuation of vibration: the dominant vibration modes can be reduced to one tenth compared to that of a conventional driver. In addition, the mechanism of inducing torque ripple from time-harmonic currents is analyzed and the relationship between induced torque ripple and exhibited vibration modes is examined.  相似文献   

14.
This paper presents a method to analyze the free vibration of a rotating disk–spindle system in a HDD with hydrodynamic bearings (HDBs) considering the flexibility of a complicated base structure by using finite element method. Finite element equations of each component of a HDD spindle system from the spinning flexible disk to the flexible base plate are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between the sleeve and hydrodynamic bearings to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. The validity of the proposed method is verified by comparing the calculated damped natural frequencies and modes with the experimental results. This research also shows that the supporting structure which includes the stator, housing and base plate plays an important role in determining the natural frequencies and mode shapes of a HDD spindle system  相似文献   

15.
This research investigated the characteristics of fluid dynamic bearings (FDBs) in a HDD spindle motor with an hourglass-shaped sleeve. We demonstrated experimentally that the hourglass-shaped sleeve generated through the ball-sizing process is a major source of large repeatable runout and non-repeatable runout in a HDD spindle system. We also numerically proved the effect of hourglass-shaped sleeves on pressure, friction torque, stiffness and damping coefficients, critical mass, and shock response. Finally, we proposed a robust design for FDBs with hourglass-shaped groove depths to compensate for the decrease in the static and dynamic performance of FDBs with hourglass-shaped sleeves. The proposed hourglass-shaped groove depth improves the performance of FDBs with both straight and hourglass-shaped sleeves.  相似文献   

16.

Mechanical vibration and acoustic noise are major obstacles in the development of high-density and high-spindle-speed hard disk drives. Torque ripple caused by the electrical driver is the main source of vibration and noise. This paper proposes a novel driver for spindle motors in hard disk drives based on the principle of position sensorless vector control. To reduce torque ripple, the proposed driver feeds the spindle motor in sinusoidal driving mode by which the sinusoidal current of the motor can be obtained. Experimental results of the proposed driver demonstrate the better driving performance in startup condition and fine sinusoidal current in steady state. Vibration testing shows significant improvement in the attenuation of vibration: the dominant vibration modes can be reduced to one tenth compared to that of a conventional driver. In addition, the mechanism of inducing torque ripple from time-harmonic currents is analyzed and the relationship between induced torque ripple and exhibited vibration modes is examined.

  相似文献   

17.
 With areal recording density of hard disk drives (HDD) historically growing at an average of 60% per year and fast spindle speed to continue to reduce access time, it is becoming increasingly more difficult to maintain the precise positioning required of the GMR heads to read and write data. Any unexpected vibration will cause the data written to a wrong data track. Consequently, the dynamic behaviors of HDD spindle systems and their potential influences on track misregistration are key issues in disk drive design. With rapid advances in the emerging consumer device market, the fluid bearing spindle motors, which have low NRRO, low acoustic noise and high damping, are being developed as next generation spindles. This paper is to study transient dynamic performance of HDD ferro-fluid bearing spindle systems. The FEA based component mode synthesis method is used to reduce the overall spindle system dimensions. The effect of the unbalanced magnetic pulls (UMP) due to two different types of motor configurations (balanced and unbalanced configurations) on the dynamic behaviors of spindle system was investigated. The simulated results show that the motor with balanced configuration provides better spindle dynamic performance due to absence of UMP. The UMP derived from the unbalanced configuration can result in some frequency resonance interactions and adversely affect the HDD servo-tracking system. Received: 5 July 2001/Accepted: 17 October 2001  相似文献   

18.
A slotless self-bearing motor design is analyzed. The proposed design eliminates the trade-off between motoring torque and bearing force with respect to PM thickness found in many recent designs. Expressions for torque and radial force production are derived, including both control-type forces and destabilizing side-pull forces. The feedback control algorithm and simulated results are also presented. The analysis indicates that: (1) independent torque and bearing force is achieved for a large number of PM pole pairs; (2) the magnitude of both torque and bearing force increases with PM thickness; and (3) the motor is capable of stable operation as long as the winding current phase shift with respect to the PM flux is small.  相似文献   

19.
 This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing (PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT), and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or axial displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge–Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system. Received: 5 July 2001/Accepted: 17 October 2001  相似文献   

20.
针对感应电动机常规直接转矩控制中存在磁链、转矩脉动大,低速控制不精确等问题,在建立α-β坐标系感应电动机数学模型的基础上,提出了一种基于滑模变结构的新型直接转矩控制方法。该方法利用转速滑模变结构控制器代替常规直接转矩控制中的PI控制器,可有效减小常规直接转矩控制中的磁链和转矩脉动,增强了系统的稳定性。仿真结果证明了该方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号