首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the many multipath routing protocols, the AOMDV is widely used in highly dynamic ad hoc networks because of its generic feature. Since the communicating nodes in AOMDV are prone to link failures and route breaks due to the selection of multiple routes between any source and destination pair based on minimal hop count which does not ensure end-to-end reliable data transmission. To overcome such problems, we propose a novel node disjoint multipath routing protocol called End-to-End Link Reliable Energy Efficient Multipath Routing (E2E-LREEMR) protocol by extending AOMDV. The E2E-LREEMR finds multiple link reliable energy efficient paths between any source and destination pair for data transmission using two metrics such as Path-Link Quality Estimator and Path-Node Energy Estimator. We evaluate the performance of E2E-LREEMR protocol using NS 2.34 with varying network flows under random way-point mobility model and compare it with AOMDV routing protocol in terms of Quality of Service metrics. When there is a hike in network flows, the E2E-LREEMR reduces 30.43 % of average end-to-end delay, 29.44 % of routing overhead, 32.65 % of packet loss ratio, 18.79 % of normalized routing overhead and 12.87 % of energy consumption. It also increases rather 10.26 % of packet delivery ratio and 6.96 % of throughput than AOMDV routing protocol.  相似文献   

2.
In this paper, we present a location aided knowledge extraction routing (LAKER) protocol for mobile ad hoc networks (MANETs). The novelty of LAKER is that it learns from past actions to guide future behaviors. In particular, LAKER can gradually discover current topological characteristics of the network, such as population density distribution, residual battery map, and traffic load status. This knowledge can be organized in the form of a set of guiding routes, each of which consists of a chain of guiding positions between a pair of source and destination locations. The guiding route information is learned by individual nodes during route discovery phase, and it can be used to guide future route discovery processes in a more efficient manner. LAKER is especially suitable for mobility models where nodes are not uniformly distributed. LAKER can exploit topological characteristics in these models and limit the search space in route discovery processes in a more refined granularity than location aided routing (LAR) protocol. Simulation results show that LAKER outperforms LAR and DSR in term of routing overhead, saving up to 30–45% broadcast routing messages compared to LAR approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we propose a speed prediction model using auto‐regressive integrated moving average (ARIMA) and neural networks for estimating the futuristic speed of the nodes in mobile ad hoc networks (MANETs). The speed prediction promotes the route discovery process for the selection of moderate mobility nodes to provide reliable routing. The ARIMA is a time‐series forecasting approach, which uses autocorrelations to predict the future speed of nodes. In the paper, the ARIMA model and recurrent neural network (RNN) trains the random waypoint mobility (RWM) dataset to forecast the mobility of the nodes. The proposed ARIMA model designs the prediction models through varying the delay terms and changing the numbers of hidden neuron in RNN. The Akaike information criterion (AIC), Bayesian information criterion (BIC), auto‐correlation function (ACF), and partial auto‐correlation function (PACF) parameters evaluate the predicted mobility dataset to estimate the model quality and reliability. The different scenarios of changing node speed evaluate the performance of prediction models. Performance results indicate that the ARIMA forecasted speed values almost match with the RWM observed speed values than RNN values. The graphs exhibit that the ARIMA predicted mobility values have lower error metrics such as mean square error (MSE), root MSE (RMSE), and mean absolute error (MAE) than RNN predictions. It yields higher futuristic speed prediction precision rate of 17% to 24% throughout the time series as compared with RNN. Further, the proposed model extensively compares with the existing works.  相似文献   

4.
The connectivity properties of a mobile linear network with high speed mobile nodes and strict delay constraint are investigated. A new mobility model is developed to represent the steady state node distribution, and it accurately captures the statistical properties of random node arrival, time-varying node speed, and the distinct behaviors of nodes following different traffic patterns.With the mobility model, the statistical properties of network connectivity are studied and identified. Unlike most previous works that do not consider the impacts of transmission latency, which is critical for real time applications, this paper identifies the quantitative relationship between network connectivity and delay constraint. The results are applicable to both delay constrained networks and delay tolerant networks. The connectivity analysis is performed with a novel geometry-assisted analytical method. Exact connectivity probability expressions are developed by using the volumes of a hypercube intersected by a hyperplane, and a hyperpyramid. The geometry-assisted analytical method significantly simplifies the connectivity analysis.  相似文献   

5.
This paper proposed a connectivity-based multi-lane geographic routing protocol (CGRP) for vehicular ad hoc networks. The proposed CGRP is based on an effective selection of road intersections through which a package must pass from source to destination. The cooperative connectivity probability and delay are taken into consideration when choosing the most suitable path for delay-sensitive safety traffic. Analytical expressions for cooperative connectivity probability is derived based on a three-lanes path model. Geographical forwarding is used to transfer packets between any two intersections on the path, reducing the path sensitivity to individual node movements. Furthermore, forwarding packets between two adjacent intersections also depend on geographic location information. Neighbor nodes’ priority are assigned according to position, speed, direction and other factors. Node with the highest priority will be selected as the next hop. Numerical and simulation results show that the proposed algorithm outperforms the exsiting routing protocols in terms of the end-to-end delay and the number of hops with a little cost of routing overhead in city environments.  相似文献   

6.
The goal of our work is to establish chosen scenario metric parameters for ad hoc on demand distance vector (AODV) routing protocol by both simulation and statistical analysis. In first part of our work, we have carried out simulation of AODV on NS2 under different topological conditions. AODV’s performance for end to end delay, energy consumption and packet delivery rate as a function of area, packet rate and packet size is recorded. Based on evaluation of statistical data & graphs, range of scenario metric parameters at which AODV performs best is chosen. Also, Random topology with mobility is considered as chosen topology for AODV after evaluating performance. Performance of MANET is highly influenced by parametric settings for speed, area, packet rate, packet size. Based on our analysis of goodness of fit, residual and prediction bounds we conclude that the regression analysis equation for performance parameters is acceptable predictive empirical model for the range of values obtained from the experimental data. The simulation results show that our empirical model is capable of producing good estimates as statistical parameters values are well within limits. Therefore, we may infer that for the experimental set up under consideration, the chosen scenario metric parameters are packet rate of 35 packets per second, area 500 m2, packet size 512 bytes. With the range chosen for scenario metric, the performance metric parameters range obtained was, Energy Consumption 0.1–3.2 J, end to end delay 3.2–4.8 ms, PDR 90–100 which demonstrated the capability of predictable and repeatable performance.  相似文献   

7.
Node’s mobility, bursty data traffic, and dynamic nature of the network make congestion avoidance and control a challenging task in Mobile Adhoc Networks (MANETs). Congestion results in high packet loss rate, increased delays, and wastage of network resources due to re-transmissions. In this paper, we propose In-route data rate adaptation to avoid packet loss. Proposed scheme is based on the analysis of queue length of the forwarding nodes, number of data source nodes, and rate of link changes. In proposed technique, queue length of forwarding nodes is communicated periodically to the neighbor nodes using existing control messages of the underlying routing protocol. Keeping in view the queue length of forwarding nodes, number of data source nodes, and rate of link changes, initially the intermediate nodes buffer the incoming data packets upto some threshold and then, gradually shift the effect of congestion to the data source nodes. Then, the source node adapts its sending data rate to avoid congestion and to ensure reliable data communication. We have performed simulations in NS-2 simulator by varying different network metrics such as data rate, number of source nodes, and node speed. Results show that proposed technique improves network performance in terms of packet delivery ratio upto 15 %, reduction of average end-to-end delay and packet loss due to interface queue overflow upto 25 % and 14 % respectively, as compared to the static rate adaptation scheme.  相似文献   

8.
In this paper, we study the issue of routing in a vehicular ad hoc network with the assistance of sparsely deployed auxiliary relay nodes at some road intersections in a city. In such a network, vehicles keep moving, and relay nodes are static. The purpose of introducing auxiliary relay nodes is to reduce the end‐to‐end packet delivery delay. We propose a sparsely deployed relay node assisted routing (SRR) algorithm, which differs from existing routing protocols on how routing decisions are made at road intersections where static relay nodes are available such that relay nodes can temporarily buffer a data packet if the packet is expected to meet a vehicle leading to a better route with high probability in certain time than the current vehicles. We further calculate the joint probability for such a case to happen on the basis of the local vehicle traffic distribution and also the turning probability at an intersection. The detailed procedure of the protocol is presented. The SRR protocol is easy to implement and requires little extra routing information. Simulation results show that SRR can achieve high performance in terms of end‐to‐end packet delivery latency and delivery ratio when compared with existing protocols. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.  相似文献   

10.
为缓解交通阻塞、提高路网通过能力、减少交通事故、降低能源消耗以及减轻环境污染,可基于无线传感网络和ZigBee协议构建一种大范围、全方位、实时、准确、高效的综合运输和管理系统——智能交通系统。通过布置传感器节点构建无线网络,可收集道路上的物理参数和环境信息,如车辆速度、车流量、环境温度、路面噪音和震动等,达到车辆交通监测的目的。使用OPNET仿真软件对该系统进行仿真,讨论了网络在不同拓扑、不同车流量以及节点失效情况下的仿真结果,并对网络性能进行了评估,给网络规划及系统构建提供了可靠的定量依据和启发。  相似文献   

11.
Joy  Sumesh J.  Chunming 《Ad hoc Networks》2007,5(2):189-209
Mobility affects routing protocol performance in a Mobile Ad Hoc NETwork (MANET). This paper introduces a novel concept of “macro-mobility” information obtained from the sociological movement pattern of MANET users, and proposes a routing protocol that can take advantage of the macro-mobility information. This macro-mobility information is extracted from our observation that the movement of a mobile user exhibits a partially repetitive “orbital” pattern involving a set of “hubs”. This partially deterministic movement pattern is not only practical, but also useful for locating nodes without the need for constant tracking and for routing packets to them without flooding.More specifically, this paper makes the following two contributions. First, it proposes an ORBIT mobility framework to achieve this macro-level abstraction of orbital movement. Second, to take advantage of this hub-based orbital pattern, it proposes a Sociological Orbit aware Location Approximation and Routing (SOLAR) protocol. Extensive performance analysis shows that SOLAR significantly outperforms conventional routing protocols like Dynamic Source Routing (DSR) and Location Aided Routing (LAR) in terms of higher data throughput, lower control overhead, and lower end-to-end delay.  相似文献   

12.
Quality of Service (QoS) support in Mobile Ad Hoc Networks (MANETs) for group communication necessitates design of reliable networks with multicast support mechanisms. Reliable network connectivity among MANET nodes require high quality links that have much less packet drops and reliable nodes considering node mobility and failures. Reliability of a network can be enhanced by designing an end-to-end network pipe that satisfies the required QoS in terms of in-flight packets from source to a destination as well as by using a path comprising of reliable nodes. In-flight packets may be computed by using bandwidth delay product (BDP) of a network pipe. To meet the QoS requirements of an application, BDP should be maintained stable irrespective of vibrant network conditions. In this paper, we propose a BDP based multicast routing scheme in MANET using reliable ring mesh backbone. The scheme operates in the following sequence. (1) Reliable node pairs are computed based on mobility, remaining battery power and differential signal strength. The node pairs also compute BDP between them. BDP of a reliability pair is assessed using available bandwidth and delay experienced by a packet between them. (2) Backbone ring mesh is constructed using reliable pair nodes and convex hull algorithm. Reliable ring mesh is constructed at an arbitrary distance from the centroid of the MANET area. (3) Multicast paths are found by discovering a path from source to each destination of the group with concatenated set of reliability pairs that satisfy the BDP requirement. (4) The ring mesh maintains high BDP on ring links and can recover in case of node mobility and failures. Results show that there is an improvement in terms of end-to-end delay, packet delivery ratio, control overhead, memory overhead and application rejection ratio as compared to the Enhanced On Demand Multicast Routing Protocol.  相似文献   

13.
DBLAR:A DISTANCE-BASED LOCATION-AIDED ROUTING FOR MANET   总被引:2,自引:0,他引:2  
In location-aided routing of Mobile Ad hoc NETworks (MANET), nodes mobility and the inaccuracy of location information may result in constant flooding, which will reduce the network performance. In this paper, a Distance-Based Location-Aided Routing (DBLAR) for MANET has been proposed. By tracing the location information of destination nodes and referring to distance change between nodes to adjust route discovery dynamically, the proposed routing algorithm can avoid flooding in the whole networks. Besides, Distance Update Threshold (DUT) is set up to reach the balance between real-time ability and update overhead of location information of nodes, meanwhile, the detection of relative distance vector can achieve the goal of adjusting forwarding condition. Simulation results reveal that DBLAR performs better than LAR1 in terms of packet successful delivery ratio, average end-to-end delay and routing-load, and the set of DUT and relative distance vector has a significant impact on this algorithm.  相似文献   

14.
A Cross Layer Routing Protocol for Multihop Cellular Networks   总被引:1,自引:1,他引:0  
We propose a cross-layer routing protocol for a Code Division Multiple Access (CDMA) Multihop Cellular Network (MCN). In designing the routing protocol for MCN, multiple constraints are imposed on intermediate relay node selection and end-to-end path selection. The constraints on relay nodes include willingness for cooperation, sufficient neighbourhood connectivity and the level of interference offered on the path. Path constraints include end-to-end throughput and end-to-end delay. A facile incentive mechanism is presented to motivate the cooperation between nodes in call forwarding. In addition, we present a route resilience scheme in the event of dynamic call dropping. In particular, a fast neighbour detection scheme for route resilience is proposed. Instead of using periodic HELLO messages as in traditional ad-hoc routing, the proposed neighbour detection scheme adopts an explicit handshake mechanism to reduce neighbour detection latency. We conclude the paper by demonstrating the superior performance of the proposed routing protocol compared with the other well known routing algorithms.  相似文献   

15.
This paper focuses on the performance analysis of Underwater Wireless Acoustic Sensor Networks (UWASNs) with passively mobile sensor nodes moving because of the influence of major oceanic forces. In an UWASN, passive node mobility is inevitable. Therefore, the performance analysis of UWASNs renders meaningful insights with the inclusion of a mobility model, which represents realistic oceanic scenarios. In this regard, the existing works on performance analysis of UWASNs lack the consideration of major dominating forces, which offer impetus for a node's mobility. Additionally, the existing works are limited to only shallow depths and coastal areas. Therefore, in this paper, we have proposed a physical mobility model, named Oceanic Forces Mobility Model , by incorporating important realistic oceanic forces imparted on nodes. The proposed model considers the effects of node mobility in 3‐D space of water. We also present an analysis on the impact of node mobility on the performance of UWASNs in terms of network dispersion and localization. Simulation results indicate performance degradation of UWASNs in the presence of oceanic forces—localization coverage decreases by 36.70% , localization error increases nearly by 21.14% , and average energy consumption increases by 3% approximately. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Existing MANET routing protocols rely heavily on hop count evaluation. Although this is simple and efficient, it sacrifices the potential performance gains obtainable by considering other dynamic routing metrics. In this paper, we propose a delay prediction mechanism and its integration with a MANET proactive routing protocol. We demonstrate our approach of predicting mean queuing delay as a nonstationary time series using appropriate neural network models: Multi-Layer Perceptron or Radial Basis Function. To support MANET proactive routing, our delay prediction mechanism is devised as a distributed, independent, and continuous neural network training and prediction process conducted on individual nodes. We integrated our delay prediction mechanism with a well-known MANET proactive routing protocol—OLSR. The essential part of this integration is our TierUp algorithm, which is a novel node-state routing table computation algorithm. The structure and the key parameters of the resulting extended OLSR, called OLSR_NN, are also discussed. Our simulation shows that because of its capability of balancing the traffic, OLSR_NN is able to increase data packet delivery ratio and reduce average end-to-end delay in scenarios with complex traffic patterns and wide range of node mobility, compared to OLSR.  相似文献   

17.
In general, wireless sensor networks (WSNs) consist of many sensors which transmit data to a central node, called the sink, possibly over multiple hops. This many-to-one data routing paradigm leads to nonuniform traffic distribution for the different sensors (e.g., nodes closer to the sink transfer more traffic than those farther away). In this paper, we perform an analysis of the fairness issue by presenting a tree-based WSN and derive the throughput, delay, and energy distribution for each sensor under the fairness constraint. Based on the analysis, we design our fair data collection protocol in which each node decides its media access and packet forwarding strategies in a distributed manner. Finally, we demonstrate the effectiveness of our solution through simulations. The results for the proposed protocol show the accuracy of the analysis and show that the protocol ensures the fair delivery of packets and reduces end-to-end delay. Based on the analysis, we also quantitatively determine the energy required for each of the nodes and show that a nonuniform energy distribution can maximize the network lifetime for the WSN scenario under study.  相似文献   

18.
Random waypoint (RWP) mobility model is widely used in ad hoc network simulation. The model suffers from speed decay as the simulation progresses and may not reach the steady state in terms of instantaneous average node speed. Furthermore, the convergence of the average speed to its steady state value is delayed. This usually leads to inaccurate results in protocol validation of mobile ad hoc networks modeling. Moreover, the probability distributions of speed vary over the simulation time, such that the node speed distribution at the initial state is different from the corresponding distribution at the end of the simulation. In order to overcome these problems, this paper proposes a modified RWP mobility model with a more precise distribution of the nodes' speed. In the modified model, the speeds of nodes are sampled from gamma distribution. The results obtained from both analysis and simulation experiments of the average speed and the density of nodes' speed indicate that the proposed gamma random waypoint mobility model outperforms the existing RWP mobility models. It is shown that a significant performance improvement in achieving higher steady state speed values that closely model the pre‐assumed average speeds are possible with the proposed model. Additionally, the model allows faster convergence to the steady state, and probability distribution of speed is steady over the simulation time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Vehicular ad hoc network (VANET) is an emerging wireless communications technology that is capable of enhancing driving safety and velocity by exchanging real-time transportation information. In VANETs, the carry-and-forward strategy has been adopted to overcome uneven distribution of vehicles. If the next vehicle located is in transmission range, then the vehicle forwards the packets; if not, then it carries the packets until meeting. The carry mostly occurs on sparsely populated road segments, with long carry distances having long end-to-end packet delays. Similarly, the dense condition could have long delays, due to queuing delays. The proposed intersection-based routing protocol finds a minimum delay routing path in various vehicle densities. Moreover, vehicles reroute each packet according to real-time road conditions in each intersection, and the packet routing at the intersections is dependent on the moving direction of the next vehicle. Finally, the simulation results show that the proposed Intersection-Based Routing (IBR) protocol has less end-to-end delay compared to vehicle-assisted data delivery (VADD) and greedy traffic aware routing protocol (GyTAR) protcols.  相似文献   

20.
In this paper, a proposed new wireless protocol so-called wireless controller area network is introduced. WCAN is an adaptation of its wired cousin, controller area network protocol. The proposed WCAN uses token frame scheme in providing channel access to nodes in the system. This token frame method follows the example used in wireless token ring protocol which is a wireless network protocol that reduces the number of retransmissions as a result of collisions. This scheme based on CAN protocol allows nodes to share a common broadcast channel by taking turns in transmitting upon receiving the token frame that circulates around the network for a specified amount of time. The token frame allows nodes to access the network one at a time, giving ‘fair’ chance to all nodes instead of competing against one another. This method provides high throughput in a bounded latency environment. The proposed WCAN protocol has been developed and simulated by means of QualNet simulator. The performances of this proposed protocol are evaluated from the perspective of throughput, end-to-end delay and packet delivery ratio, and are compared against the IEEE 802.11 protocol. Simulation results show that the proposed WCAN outperforms IEEE 802.11 based protocol by 62.5 % in terms of throughput with increasing network size. Also, it shows an improvement of 6 % compared to IEEE 802.11 standard at a higher data interval rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号