首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ synthesis of bulk Al3BC3 was achieved via a reactive hot-pressing method using Al, B4C, and graphite powders at 1800°C for 2 h. The reaction path for synthesizing Al3BC3 was investigated. It was found that Al3BC3 formed via the reaction of C, B4C, and Al4C3 above 1180°C. Dense Al3BC3 was prepared with a little B4C and graphite remained. Microstructure observations revealed the plate-like morphology of Al3BC3 grains. Moreover, the mechanical properties of Al3BC3 were characterized (Vickers hardness of 11.1 GPa, bending strength of 185 MPa, fracture toughness of 2.3 MPa·m1/2, and Young's modulus of 163 GPa). Young's modulus decreased slowly with increasing temperature, and at 1600°C remained 79% of that at ambient temperature. These results show that Al3BC3 is a promising lightweight high temperature structural material.  相似文献   

2.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

3.
B6O powders were hot pressed with and without Al2O3 as a sintering additive at temperatures up to 1900°C and a pressure of 50 MPa. The microstructure of a doped and undoped sample was studied by transmission electron microscopy techniques. This paper aims at studying the correlation between micro/nanostructure evolution and the resulting mechanical properties; i.e., hardness and fracture toughness. The addition of alumina yields the formation of a secondary aluminum borate phase in addition to promoting grain growth strongly. While the addition of Al2O3 slightly decreased the hardness of the B6O polycrystals, the corresponding fracture toughness was strongly improved, as compared with the undoped material.  相似文献   

4.
The fracture toughness of 3 mol% Y2O3-ZrO2 (3Y-PSZ) composites containing 10–30 vol% Al2O3 with different particle sizes was investigated. It was found that Al2O3 dispersion of up to 30 vol% increased the fracture toughness by 17% to 30%, and the toughness increase was more remarkable in the composite dispersed with Al2O3 particles of larger sizes. By combining the effects of the dispersion toughening and phase transformation toughening, the toughness change in the present materials was theoretically predicted, which was in good agreement with the experimental data.  相似文献   

5.
The effects of Ni3Al and Al2O3 additions on the mechanical properties of hydroxyapatite (HAp) were investigated. The addition of Ni3Al particles increased the strength as well as the fracture toughness of HAp. However, the improvements in the properties were limited because of the formation of microcracks around the metal particles. The microcracks were formed because of the large difference in the coefficients of thermal expansion between HAp and Ni3Al, and because of the relatively large size of Ni3Al particles (∼20 µm). The addition of submicrometer Al2O3 powder was also effective in increasing the mechanical properties. The flexural strength and the fracture toughness were increased from about 100 MPa and 0.7 MPam1/2, respectively, to 200 MPa and 1.5 MPam1/2 by the addition of 20 vol% Al2O3. When Ni3Al and Al2O3 were added together, the fracture toughness was further increased to 2.3 MPam1/2. This increase in the fracture toughness was attributed to the synergistic effect of matrix strengthening and crack interactions with the metal particles.  相似文献   

6.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

7.
Al2O3–Ni composites were prepared by the reactive hot pressing of Al and NiO. The composites had a two-phase, interpenetrating microstructure and contained ∼35 vol% Ni. They exhibited an impressively high combination of strength and toughness at room temperature; the four-point bending strength was in excess of 600 MPa with a fracture toughness of more than 12 MPa·m1/2. Examination of fracture surfaces showed that Ni ligaments underwent ductile deformation during fracture. SEM analysis revealed knife-edged Ni ligaments with a limited amount of debonding around their periphery (i.e., at the Ni–Al2O3 interface), indicating a strong Ni–Al2O3 bond.  相似文献   

8.
The mechanical properties of the Al2O3-NiAl system are investigated in the present study. Specimens containing 0 to 100 vol% NiAl in Al2O3 were prepared by hot pressing. Both the strength and toughness of the Al2O3-NiAl composites are higher than the values predicted by the rule of mixtures. The grain growth of Al2O3 and NiAl in the composites is constrained by each component. The increase in strength is thus partly attributed to microstructural refinement. The toughness enhancement is contributed by a combination of crack deflection and crack bridging.  相似文献   

9.
The microstructures of Al2O3–SiO2–SiC–C refractory matrices with aluminum, silicon, Si3N4, BN, B2O3, and B4C additives are characterized before and after a crucible slag test, and the phases present are compared to those expected at thermodynamic equilibrium. The carbon content dominates the resistance to CaO–MgO–Al2O3–SiO2 slag penetration, while the viscosity of liquid phases present has a significant influence when the matrix carbon contents are similar. Silicon and Si3N4 additives reduce slag penetration resistance because of indirect oxidation of carbon to form SiC. B4C, in particular, and B2O3 also reduce slag penetration resistance because of formation of a more fluid boron-containing liquid, while aluminum and BN addition have no significant effect. Carbon and BN hardly react with the slag, while SiC partially reacts with it, leading to deposition of carbon as a dense layer. Corundum present in the refractories also readily dissolves in the slag. Microstructurally, slag penetration resistance is associated with the dense carbon layer located at the slag-refractory interface.  相似文献   

10.
Control of microstructure in the Al2O3/LaAl11O18 system was performed. Elongated alumina grains were formed by doping with small addition of silica, and 20 vol% lanthana- luminate was formed in situ by the reaction of LaAlO3- A12O3 in an alumina matrix. Strengths of over 600 MPa and a high fracture toughness (6 MPa.m1/2) were achieved in the material with both elongated A12O3 grains and LaAl11O18 platelets. Generally antagonistic properties such as strength and fracture toughness have been made compatible in the same ceramic system.  相似文献   

11.
ZrB2–LaB6 powder was obtained by reactive synthesis using ZrO2, La2O3, B4C, and carbon powders. Then ZrB2–20 vol% SiC–10 vol% LaB6 (ZSL) ceramics were prepared from commercially available SiC and the synthesized ZrB2–LaB6 powder via hot pressing at 2000°C. The phase composition, microstructure, and mechanical properties were characterized. Results showed that both LaB6 and SiC were uniformly distributed in the ZrB2 matrix. The hardness and bending strength of ZSL were 17.06±0.52 GPa and 505.8±17.9 MPa, respectively. Fracture toughness was 5.7±0.39 MPa·m1/2, which is significantly higher than that reported for ZrB2–20 vol% SiC ceramics, due to enhanced crack deflection and crack bridging near SiC particles.  相似文献   

12.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

13.
Fracture toughness of ZrO2-toughened alumina could he increased by macroscopic interfaces, such as those existing in laminated composites. In this work, tape casting was used to produce A/A or A/B laminates, where A and B can be Al2O3, Al2O3/5 vol% ZrO2, and Al2O3/l0 vol% ZrO2. An increase of toughness is observed, even in the Al2O3/Al2O3 laminates.  相似文献   

14.
B4C/A1 offers a family of engineering materials in which a range of properties can be developed by postdensiflcation heat treatment. In applications where hardness and high modulus are required, heat treatment above 600°C provides a multiphase ceramic material containing only a small amount of residual metal. Heat treatment between 600° and 700°C produces mainly A1B2; 700° and 900°C results in a mixture of A1B2 and A14BC; 900° and 980°C produces primarily A14BC; and 1000° to 1050°C results in A1B24C4 with small amounts of A14C3 if the heating does not exceed 5 h. Deleterious A14C3 is avoided by processing below 1000°C. All of these phases tend to form large clusters of grains and result in lower strength regardless of which phase forms. Toughness is also reduced; the least determinal phase is A1B2. The highest hardness (88 Rockwell A) and Young's modulus (310 GPa) are obtained in Al4BC-rich samples. AlB2-containing samples exhibit lower hardness and Young's modulus but higher fracture toughness. While the modulus, Poisson's ratio, and hardness of multiphase B4C/A1 composites containing 5–10 vol% free metal are comparable to ceramics, the unique advantage of this family of materials is low density (>2.7 g/cm3) and higher than 7 MPa-m1/2 fracture toughness.  相似文献   

15.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

16.
LaPO4/Al2O3 composites were fabricated by spark plasma sintering. The effects of LaPO4 contents on the mechanical properties of the composites were investigated. The bending strength and fracture toughness can reach the maximum value of 568.2±30 MPa and 4.8±0.5 MPa·m1/2 for the composite with 16.4 vol% LaPO4 addition, respectively. The elastic moduli and hardness of the composites decreased with increasing LaPO4 content. Furthermore, the experimental results show that the composites can be machined by a tungsten carbide drill as the LaPO4 volume fraction is higher than 34.4 vol%.  相似文献   

17.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

18.
Al2O3-WC-Co composites were fabricated by vacuum hot-pressing mixtures of Al2O3, WC, and cobalt powders. The phases formed with WC additions of up to 40 wt% were α-Al2O3, WC, Co3W3C, and small amounts of f-Co (face-centered cubic cobalt) and carbon (graphite); no cobalt or carbon phases formed at >40 wt% WC. A more-uniformly distributed and connected WC matrix formed as the WC content increased. The 10Al2O3-80WC-10Co (in wt%) composite exhibited high bending strength (1250 MPa), fracture toughness (9 MPam1/2), and hardness (20.6 ± 0.5 GPa) simultaneously. The high bending strength was mainly attributed to fewer fracture origins due to the uniformly distributed and connected WC matrix together with a lower porosity. Increased fracture toughness was caused mainly by crack deflection and crack bridging in a uniformly connected WC matrix. High hardness resulted from finer WC metallic compounds and Co3W3C precipitation in almost all ranges.  相似文献   

19.
Microstructure, phase stability, and mechanical properties of CeO2-partially-stabilized zirconia (12 mol% Ce-TZP) containing 10 wt% Al2O3 and 1.5 wt% MnO were studied in relation to the base Ce-TZP and the Ce-TZP/Al2O3 composite without MnO. The MnO reacted with both CeO2 and Al2O3 to form a new phase of approximate composition CeMnAl11O19. The reacted phase had a magnetoplumbite structure and formed elongated, needlelike crystals. The MnO-doped Ce-TZP/Al2O3 composites sintered at an optimum temperature of 1550°C exhibited high strength (650 MPa in four-point bending) and rising crack-growth-resistance behavior, with fracture toughness increasing from 7.6 to 10.3 MPa.In12 in compact tension tests. These improved mechanical properties were associated with relatively high tetragonal-to-monoclinic transformation temperature ( M s=−42°C) at small grain size (2.5 μm), significant transformation plasticity in mechanical tests (bending, uniaxial tension, and uniaxial compression) and transformation zones at crack tips in compact tension specimens. The transformation yield stress, zone size, and fracture toughness were sensitive to the sintering temperature varied in the range 1500° to 1600°C. Analysis of the transformation zones using Raman microprobe spectroscopy and calculation of zone shielding for the observed zones indicated that a large fraction of the fracture toughness (∼70%) was derived from transformation toughening.  相似文献   

20.
Three composites that were 96% alumina were mixed and uniaxially dry-pressed into bars and pellets; all had monoclinic SrAl2Si2O8 as an intergranular phase. The diffraction patterns, microstructure, density, dielectric properties, strength, and toughness were measured. The first composition, which contained crystalline SrCO3, Al2O3, and SiO2, in a 1:1:2 molar ratio, as the 4% component, densified but was generally inferior to the second and third compositions, which contained strontium aluminosilicate (SrAl x Si y O z , SAS) glass as the 4% component, in terms of mechanical properties, defects, and monoclinic SrAl2Si2O8 transformation. The second composition, which lacked B2O3, was very tough and was comparable to commercial alumina, in terms of the dielectric constant. The third, which contained 0.068% of B2O3 that was dissolved in the SAS glass as a sintering aid, had high strength and toughness and no macroscopically visible defects. Mullite formed, in addition to monoclinic SrAl2Si2O8 in all three composites. Alumina–monoclinic SrAl2Si2O8 composites of the third composition had room-temperature properties that were comparable to commercial aluminas that contained 96% alumina and also had potential for mechanical and refractory applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号