首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单个光纤光栅压力和温度的同时测量   总被引:17,自引:1,他引:16  
采用特殊聚合物封装技术设计的小体积光纤光栅传感头具有压力和温度同时测量功能,能够有效地解决温度交叉敏感问题,利用封装过程出现的两个压力和温度灵敏系数不同的光栅反射峰,实现了压力和温度的单个光栅同时测量.  相似文献   

2.
Yulong  Zhang  Feng  Peng   《Optical Fiber Technology》2009,15(4):391-397
In this study, the fiber Bragg grating (FBG) was metallized with a nickel coat using an electroless-electro plating method. Under the optimum conditions, the surface of chemical plating and electroplating coat are smooth and compact, there is not any visible defect in the cross-section. The effects of the nickel coat on the properties of the fiber sensor were studied. With this plating method, the FBG can be well protected and its sensing properties can be changed. When the temperature is changed, a thermal stress between the metal coat and the fiber will be induced because of the thermal expansion coefficients difference. The thermal stress influence on the temperature sensing properties of the metalized FBG was analyzed, and a physical-mathematical model for FBG temperature sensing was presented. Experimental results show the mathematical model is feasible to explain the mechanism of temperature sensitivity enhancement for metalized FBG.  相似文献   

3.
单光纤光栅对温度与应变的同步测量   总被引:1,自引:1,他引:0  
倪凯 《光电子.激光》2010,(12):1822-1824
提出了一种采用单光纤布拉格光栅(FBG)进行温度与应变同步测量的新颖设计。一根FBG被分成等长的两部分,用环氧胶水涂敷在其中一部分的表面,再套上金属套管,此时可以看成具有不同的布拉格波长的2个FBG,利用它们之间不同的杨氏模量和热膨胀系数,应变和温度能够同步测量。实验结果表明,在2700με和75℃的测量范围内,可以达到约6.1με和1.0℃的应变和温度精确度,误差主要来源于光谱仪分辨率的限制和FBG其中一部分的胶水涂抹不够均匀,通过使用高分辨率的解调仪和提高胶水涂抹工艺可得到更高的测量精确度。  相似文献   

4.
An accurate estimation of interfacial and axial stresses in multilayered structures is important in the design process of microelectronic packaging because these stresses drive the failure modes in the package. During manufacturing, microelectronic packaging devices usually suffer from severe thermal gradients. Design engineers often simplify the thermal gradient case as an isothermal loading case by averaging the temperature of the top and bottom of the microelectronic packaging device. Such simplification usually underestimates the stress level in the devices. With the analytical model presented in this paper, the stresses in multilayered microelectronic packaging devices subjected to thermal gradient loading can easily be predicted. It is shown that ignoring the thermal gradient in the package leads to underestimation of stresses  相似文献   

5.
Many new innovations have emerged in the power electronics industry to aid in meeting the expanded market demand. In spite of that the interest in high temperature and high power applications has fueled new developments in wide bandgap semiconductor devices which are capable of operation above 200 °C, silicon devices are still prevalent in the marketplace and offer significant power ratings at affordable prices. Researches have kept pushing the limit of the application temperature of silicon devices. The key to offering functional and reliable silicon packages that can endure higher temperatures is through innovative thermal management and packaging. Effective thermal management of packaged devices can be accomplished through materials selection, design or a combination of the two. In this paper, we outline a newly designed packaging structure and the fabrication process of a functional double-sided power module switching units utilizing LTJT sintered silver for each interface. The thermal characteristics of the power module were measured in various cooling scenarios utilizing thermal transient measurements, structure function analysis and the transient dual interface method (TDIM), techniques developed by Mentor Graphics. Significant improvement of thermal performance of the fabricated module was demonstrated. The resulting improvements in thermal resistance of the power module, thermal simulation model agreement and construction, and comparison of double sided thermal results to single sided conventions are discussed.  相似文献   

6.
Fiber Bragg gratings (FBGs) can be used as sensors to monitor stress and test temperature during the processing and handling of optical fiber. As the FBG experiences a combination of mechanical and thermal loading, the return Bragg wavelength will shift proportionately to the magnitude of the load. This paper discusses the use of these sensors in quantifying induced stress on fiber during the packaging of a dispersion-compensating module (DCM) and the ensuing environmental exposure. There are two potential fiber-failure modes for fiber wound in DCMs, namely microbend-induced attenuation and fiber failure from fatigue. The ability to quantify fiber stress provides a useful feedback tool in the design phase of these modules that can aid in reducing the risk of mechanical and optical failure modes. A practical characterization process was developed to decouple thermal and stress effects on FBGs based on results from current literature and from this study. Uncoated Bragg sensors were found to respond linearly between -40 to 80/spl deg/C. Gratings with a protective polymer recoat departed from the linear behavior of the uncoated gratings below -5/spl deg/C. It was determined that the recoat material places less than 25 MPa (3.6 klbf/in/sup 2/) of axial compression on the fiber at -40/spl deg/C. Four gratings with different Bragg wavelengths were spliced into 10 km of fiber and wound into a DCM. The wind-induced stress on all four gratings quickly relaxed. The module was then thermal cycled between -40 and +75/spl deg/C. The overall stress on each grating was acceptably low for reliability purposes. The maximum stress of 17 MPa (2.5 klbf/in/sup 2/) was observed at the lowest temperature.  相似文献   

7.
微钎料球键合技术是一种成本低、适应性强,可靠性好的键合技术,容易与现有的IC自动化设备集成。微钎料球键合技术结合倒扣封装可以实现低成本、高密度以及高可靠性的MEMS封装;而且具有自对准或者自组装的功能,在MEMS封装中获得了广泛的应用。准确地预测微钎料球键合对于MEMS自组装的影响依赖于动态模型的发展。微钎料球键合技术的出现推动了标准化的MEMS封装工艺的进程。  相似文献   

8.
Wafer level chip scale packaging (WLCSP) is very promising for the miniature of packaging size, the reduction of manufacturing cost, and the enhancement of the package's performance. However, the long-term board level reliability of integrated circuit (IC) devices using wafer level packaging with large distances from neutral point (DNP) is still not fully solved. This research proposes a novel, alternative WLCSP design for facilitating higher board level reliability. The main feature of the novel WLCSP is basically in its double-pad structure (DPS) design in the interface between solder joints and silicon chip. To characterize the solder joint reliability of the DPS-WLCSP, a three-dimensional (3-D) nonlinear finite element (FE) modeling technique is employed. Based on the FE modeling, the numerical accelerated thermal cycling (ATC) test is performed under the JEDEC temperature cycling specification. The validity of the proposed FE modeling is verified by using an optical measurement method Twyman-Green interferometer. By the derived incremental equivalent plastic strain, the cumulative cycles to failure in solder joints associated with these four WLCSP are assessed based on a modified Coffin-Manson relationship. The modeled fatigue life is compared against the experimental results that adopt a two-parameter Weibull distribution to characterize cycles-to-failure distribution. For comparison, the investigation also involves several existing types of WLCSP, including the conventional (C-WLCSP), the copper post (CP-WLCSP), and the polymer post (PP-WLCSP), and solder joint reliability performance among these WLCSP packages is extensively compared. The results demonstrate that the DPS-WLCSP design not only has potential for enhancing the corresponding solder joint reliability but is also particularly effective in manufacturing process and cost. And finally, some reliability-enhanced design guidelines are provided through parametric design of the DPS.  相似文献   

9.
新型应力不敏感FBG温度传感封装结构   总被引:1,自引:0,他引:1  
光纤Bragg光栅(FBG)可以同时传感多个参量,但当仅需测量一个参量时,测量结果可能会受到一个或多个其他参量的影响,其中以温度和应力交叉敏感最为突出。为此,对比了其他几种应力不敏感型FBG温度传感器的优缺点,设计了一种新型的应力不敏感FBG温度传感封装结构,并通过实验验证了其温度传感性能及应力不敏感性。  相似文献   

10.
SiC is a wide bandgap semiconductor with better electrothermal properties than silicon, including higher temperature of operation, higher breakdown voltage, lower losses and the ability to switch at higher frequencies. However, the power cycling performance of SiC devices in traditional silicon packaging systems is in need of further investigation since initial studies have shown reduced reliability. These traditional packaging systems have been developed for silicon, a semiconductor with different electrothermal and thermomechanical properties from SiC, hence the stresses on the different components of the package will change. Pressure packages, a packaging alternative where the weak elements of the traditional systems like wirebonds are removed, have demonstrated enhanced reliability for silicon devices however, there has not been much investigation on the performance of SiC devices in press-pack assemblies. This will be important for high power applications where reliability is critical. In this paper, SiC Schottky diodes in pressure packages have been evaluated, including the electrothermal characterisation for different clamping forces and contact materials, the thermal impedance evaluation and initial thermal cycling studies, focusing on the use of aluminium graphite as contact material.  相似文献   

11.
There has been a significant amount of work over the past five years on chip scale packaging. The majority of this work has been an extension of conventional integrated circuit (IC) packaging technology utilizing either wire bonders or tape automated bonding (TAB)-type packaging technology. Handling discrete devices during the IC packaging for these type of chip scale packages (CSPs) has resulted in a relatively high cost for these packages. This paper reports a true wafer level packaging (WLP) technology called the Ultra CSPTM. One advantage of this WLP concept is that it uses standard IC processing technology for the majority of the package manufacturing. This makes the Ultra CSP ideal for both insertion at the end of the wafer fab as well as the facilitation of wafer level test and burn-in options. This is especially true for dynamic random access memory (DRAM) wafers. Wafer level burn-in and wafer level processing can be used for DRAM and other devices as a way to both reduce cost and improve cycle time. Thermal cycling results for Ultra CSPs with a variety of package sizes and input/output (I/O) counts are presented. These test vehicles, assembled to FR-4 boards without underfill, cover a range of footprints typical of flash memory, DRAM and other devices. The electrical and thermal performance characteristics of the Ultra CSP package technology are discussed  相似文献   

12.
光纤光栅毛细钢管封装工艺及其传感特性研究   总被引:6,自引:2,他引:4  
提出了一种光纤光栅的毛细钢管封装工艺,并通过材料力学多功能实验台和恒温箱对其应变与温度传感特性进行了研究。与裸光纤光栅的测试结果比较表明,毛细钢管封装工艺基本不改变光纤光栅的应变传感特性,但是温度灵敏度系数提高了约2.7倍,且线性度、重复性良好,为光纤光栅在温度测量领域的应用提供了一个很好的封装方法。  相似文献   

13.
利用磁流体替代光纤布喇格光栅(FBG)的部分二氧化硅包层,制作了一种磁流体封装薄包层FBG结构的磁场传感器,研究了传感器对磁场和温度的响应特性。结果表明,在5.0~20.0mT的磁场范围内,传感器的波长灵敏度和功率灵敏度分别为34.9pm/mT和-1.063dBm/mT,波长线性响应度达到了99.2%。封装工艺未改变FBG波长随温度线性变化的特性,但受磁流体磁光效应影响,其温度灵敏度减小到9.2pm/℃。该传感器可实现磁场测量中的温度补偿,方法简单、易于实现。  相似文献   

14.
一种基于施加预应力的FBG封装技术   总被引:1,自引:1,他引:0  
提出了一种操作方便、性能可靠的光纤Bragg光栅(FBG)传感器高温固化封装工艺。实验中,采用预应力施加装置对FBG施加轴向预应力,用高温固化剂将FBG固化封装于弹性衬底材料表面。测试结果表明,施加预应力高温固化封装的8个FBG传感器线性度均在0.999以上;波形无啁啾现象,对温度的响应灵敏度系数平均为2.05×10^...  相似文献   

15.
光纤光栅无应力毛细铜管封装及温度特性实验   总被引:5,自引:5,他引:0  
为克服裸光纤布拉格光栅(FBG)脆弱易折断的缺点,提出了一种聚合物和毛细铜管相结合的封装工艺。先用丙烯酸酯对栅区进行二次涂覆,再将二次涂覆后的FBG封装在毛细铜管内,FBG在毛细铜管内处于有余长无应力状态,二次涂覆为裸FBG提供了有效的保护。测试结果表明,二次涂覆并没有改变FBG的温度灵敏度;较薄的涂覆厚度保证了涂覆的均匀性和涂覆后光谱的质量;无胶空管封装方式消除了聚合物内部应力对温度测量精度的影响。封装后的温度特性实验表明,FBG传感器线性度为0.999 29,温度灵敏度为13.675pm/℃,重复性较好。  相似文献   

16.
刘春桐  李洪才  赵兵  张志利 《激光与红外》2007,37(10):1091-1094
从光纤Bragg光栅(FBG)衍射的射线理论入手,介绍了其传感原理;结合大型装备的应变检测,阐明了解决交叉敏感问题的原理及方法;对应变检测中光纤光栅封装技术的现状进行了概述,并指出当前封装技术存在的问题和发展方向;简要介绍了光纤光栅应变传感器的标定方法及注意事项.  相似文献   

17.
研究了光纤光栅(FBG)应变传感器的封装与安装工艺对温度交叉敏感特性的影响。基于弹性力学理论对表面粘贴式和表面螺栓安装式两种典型的FBG应变传感器封装形式的交叉敏感机理进行了理论分析,并对国内几家主要的FBG传感器生产商的产品进行了测试。测试结果表明,表面粘贴式FBG应变传感器的温度交叉敏感性要大于表面安装式FBG应变传感器,与理论分析的结果相符。  相似文献   

18.
研究开发出一种用于大传感标距测量的新型光纤光栅(FBG)应变传感器,提出一种基于预张拉原理的传感器封装方法.分别开发出传感标距为10 cm与20 cm的大标距FBG应变传感器,预张拉稳定性试验结果表明,传感器内的预张拉水平可以保持在一稳定水平.应用等截面梁标定方法研究了该传感器的应变复敏特性,结果显示,传感器布拉格波长与大标足巨内的平均应变具有非常好的线性关系.应用水浴法研究了该传感器的温度灵敏特性,结果显示,传感器布拉格波长与温度具有非常好的线性关系.最后,通过与小标距裸FBG的对比试验研究其测量大标距内平均应变的性能,结果显示,传感器可以准确测量大标距内的平均应变.  相似文献   

19.
在低温环境中,光纤光栅(Fiber Bragg Grating,FBG)材料的热膨胀系数和热光系数会发生改变,从而影响其温度传感特性。文章通过实验研究了裸光纤光栅传感器和黄铜管封装的光纤光栅传感器在低温下的温度传感特性。结果表明,在80~300 K温度范围,裸FBG温度传感器的灵敏度为6.43 pm/K,线性度为0.974,在80~230 K温度范围,温度与光纤光栅的中心波长呈现非线性关系;黄铜管封装的FBG温度传感器,在整个温度范围内灵敏度可达26 pm/K,线性度为0.996,较裸FBG温度传感器均有较大提升。对比实验表明,对光纤光栅进行封装,可以提高其温度灵敏度和线性度,改善温度传感特性。  相似文献   

20.
为了实时监测环氧树脂的固化过程,建立了基于 光纤布拉格光栅(FBG)的固化监测系统。将裸FBG、石英毛细管封装FBG和高精度热 电阻浸入到环氧树脂及其固化剂的混合物中,一 起经历固化过 程。在升降温过程中,用热电阻监测环氧树脂内部温度变化,用波长解调仪实时测量两种FB G的波长变化。 实验结果表明,石英毛细管封装FBG监测到的温度变化趋势与热电阻监测结果相同;两种FBG 的波长差反 映了固化过程中的收缩应变,固化初期变化较大,之后逐渐减小。以玻璃态转变温度为分界 点,直接植入 环氧树脂的FBG温度灵敏度分别为石英毛细管封装FBG的5.3倍和为2.2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号