首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics was investigated. The BaTi4O9 ceramics were able to be sintered at 975C when B2O3 was added. This decrease in the sintering temperature of the BaTi4O9 ceramics upon the addition of B2O3 is attributed to the formation of BaB2O4 second phase whose melting temperature is around 900C. The B2O3 added BaTi4O9 ceramics alone were not sintered below 975C, but were sintered at 875C when CuO was added. The formation of BaCu(B2O5) second phase could be responsible for the decrease in the sintering temperature of the CuO and B2O3 added BaTi4O9 ceramics. The BaTi4O9 ceramics containing 2.0 mol% B2O3 and 5.0 mol% CuO sintered at 900C for 2 h have good microwave dielectric properties of εr = 36.3, Q× f = 30,500 GHz and τf = 28.1 ppm/C  相似文献   

2.
The effect of the addition of glass on the densification, low temperature sintering, and microwave dielectric properties of the Ca[(Li1/3Nb2/3)1−x Tix]O3−δ(CLNT) was investigated. Addition of glass (B2O3-ZnO-SiO2-PbO system) improved the densification and reduced the sintering temperature from 1150C to 900C of Ca[(Li1/3Nb2/3)1−x -Tix]O3−δ microwave dielectric ceramics. As increasing glass contents from 10 wt% to 15 wt%, the dielectric constants (εr) and bulk density were increased. The quality factor (Q⋅f0), however, was decreased slightly. The temperature coefficients of the resonant frequency (τf) shifted positive value as increasing glass contents over Ti content is 0.2 mol. The dielectric properties of Ca[(Li1/3Nb2/3)0.75Ti0.25]O3−δ with 10 wt% glass sintered at 900C for 3 h were εr = 40 Q·f0 = 11500 GHz, τf = 8, ppm/°C. The relationship between the microstructure and dielectric properties of ceramics was studied by X-ray diffraction (XRD), and scanning electron microscope (SEM).  相似文献   

3.
Electrical properties and sintering behaviors of (1 − x)Pb(Zr0.5Ti0.5)O3-xPb(Cu0.33Nb0.67)O3 ((1 − x)PZT-xPCN, 0.04 ≤ x ≤ 0.32) ceramics were investigated as a function of PCN content and sintering temperature. For the specimens sintered at 1050C for 2 h, a single phase of perovskite structure was obtained up to x = 0.16, and the pyrochlore phase, Pb2Nb2O7 was detected for further substitution. The dielectric constant (ε r), electromechanical coupling factor (Kp) and the piezoelectric coefficient (d 33) increased up to x = 0.08 and then decreased. These results were due to the coexistence of tetragonal and rhombohedral phases in the composition of x = 0.08. With an increasing of PCN content, Curie temperature (Tc) decreased and the dielectric loss (tanδ) increased. Typically, εr of 1636, Kp of 64% and d33 of 473pC/N were obtained for the 0.92PZT-0.08PCN ceramics sintered at 950C for 2 h.  相似文献   

4.
BaO ⋅ Nd2O3 ⋅ 4TiO2—based ceramics were prepared by the mixed oxide route. Specimens were sintered at temperatures in the range 1200–1450C. Microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); microwave dielectric properties were determined at 3 GHz by the Hakki and Coleman method. Product densities were at least 95% theoretical. The addition of up to 1 wt% Al2O3 to the starting mixtures reduced the sintering temperatures by at least 100C. Incorporation of small levels of Al into the structure (initially Ti sites) led to an increase in Q × f values, from 6200 to 7000 GHz, a decrease in relative permittivity (εr) from 88 to 78, and moved the temperature coefficient of resonant frequency (τf) towards zero. The addition of 0.5 wt% Al2O3 with 8 wt% Bi2O3 improved densification, increased both εr (to 88) and Q× f (to 8000 GHz) and moved τf closer to zero. Ceramics in the system (1 − x)BaO ⋅ Nd2O3 ⋅ 4TiO2 + xBaO ⋅ Al2O3 ⋅ 4TiO2 exhibited very limited solid solubility. The end member BaO ⋅ Al2O3 ⋅ 4TiO2 was tetragonal in structure with the following dielectric properties: εr = 35; Q× f = 5000 GHz; τf = −15ppm/C. Microstructures of the mixed Nd-Al compositions contained two distinct phases, Nd-rich needle-like grains and large Al-rich, lath-shaped grains. Products with near zero τf were achieved at compositions of approximately 0.14BaO ⋅ Nd2O3 ⋅ 4TiO2 + 0.86BaO ⋅ Al2O3 ⋅ 4TiO2, where Q× f = 8200 GHz and εr = 71.  相似文献   

5.
1,500 °C−sintered MgTa2O6 ceramic exhibits microwave dielectric characteristics of ɛ r = 30.5, Q × f = 56,900 GHz, and τ f = 28.3 ppm/°C, whereas 1,400 °C-sintered MgNb2O6 ceramic exhibits microwave dielectric characteristics of ɛ r = 21.7, Q × f = 89,900 GHz, and τ f = −68.5 ppm/°C. In order to find the dielectric resonators with τ f value close to 0 ppm/°C, the effects of sintering condition and composition on the microwave dielectric characteristics of Mg(Ta1−x Nb x )2O6 ceramics (0.25 ≦ x ≦ 0.35) prepared under sintering temperature of 1,300–1,450 °C are investigated. The results show that as the sintering temperature increases from 1,300 to 1,450 °C, the ɛ r, Q × f and τ f values of Mg(Ta1−x Nb x )2O6 ceramics all increase and saturate at 1,450 °C. On the other hand, as the Nb2O5 content decreases, the τ f values of Mg(Ta1−x Nb x )2O6 ceramics will shift to near 0 ppm/°C. The optimized sintering conditions and composition to obtain the Mg(Ta1−x Nb x )2O6 dielectrics with τ f close to 0 ppm/°C are sintering temperature of 1,450 °C, sintering duration of 4 h, and composition of x = 0.25, which exhibits the microwave dielectric characteristics of ɛ r = 27.9, Q × f = 33,100 GHz, and τ f = −0.7 ppm/°C.  相似文献   

6.
Effect of glass addition on the low-temperature sintering and microwave dielectric properties of BaTi4O9-based ceramics were studied to develop the middle-k dielectric composition for the functional substrate of low-temperature co-fired ceramics. When 10 wt% of glass was added, sufficient densification was obtained and the relative density more than 98% was reached at the sintering temperature of 875C. The microwave dielectric properties were k = 32, Q × f = 9000 GHz, and tcf = 10 ppm/C. As the added amount of glass frit with base dielectric composition, phase changes from BaTi4O9 to BaTi5O11 and Ba4Ti13O30 was observed, which result in the modification of microwave dielectric properties.  相似文献   

7.
Ceramics of 0.2CaTiO3-0.8Li0.5Nd0.5TiO3) have been prepared by the mixed oxide route using additions of Bi2O3-2TiO2 (up to 15 wt%). Powders were calcined 1100C; cylindrical specimens were fired at temperatures in the range 1250–1325C. Sintered products were typically 95% dense. The microstructures were dominated by angular grains 1–2 μm in size. With increasing levels of Bi2O3-2TiO2 additions, needle and lath shaped second phases developed. For Bi2Ti2O7 additions up to 5 wt%, the relative permittivity increased from 95 to 131, the product of dielectric Q value and measurement frequency increased from 2150 to 2450 GHz and the temperature coefficient of resonant frequency (τ f ) increased from −28pp/C to +22pp/C. A product with temperature stable τ f could be obtained at ∼2 wt% Bi2Ti2O7 additions. For high levels of additives, there is minimal change in relative permittivity, the Qxf values degrade and τ f becomes increasingly negative.  相似文献   

8.
Glasses in the ZnO-B2O3-MO3(M = W, Mo) ternary were examined as potential replacements to PbO-B2O3-SiO2-ZnO glass frits with the low firing temperature (500–600C) for the dielectric layer of a plasma display panels (PDPs). Glasses were melted in air at 950–1150C in a narrow region of the ternary using standard reagent grade materials. The glasses were evaluated for glass transition temperature (T g ), softening temperature (T d ), the coefficient of thermal expansion (CTE), dielectric constant (ε r ), and optical property. The glass transition temperature of the glasses varied between 470 and 560C. The coefficient of thermal expansion and the dielectric constant of the glasses were in the range of 5–8 × 10− 6/C and 8–10, respectively. The addition of MO3to ZnO-B2O3binary could induce the expansion of glass forming region, the reduction of T g and the increase in the CTE and the dielectric constant of the glasses. Also, the effect of the addition of MO3to ZnO-B2O3binary on the transmittance in the visible-light region (350–700 nm) was investigated.  相似文献   

9.
Phase transformation and microwave dielectric properties of BiPO4 ceramics   总被引:1,自引:0,他引:1  
Monazite-type compounds, BiPO4 polymorphs were prepared by the solid-state reaction method. The phase transformation and microwave dielectric properties of sintered ceramics were investigated using the X-ray powder diffraction (XRD) and a network analyzer, respectively. The low-temperature phase of BiPO4 has monoclinic structure, and was transformed into the high-temperature phase with a slight distortion of monoclinic when it is heated above 600C. The effect of the transformation on the microwave dielectric properties was examined. It was found that the dielectric properties of each phase were significantly different. In particular, the high-temperature phase sintered at 950C has good microwave dielectric properties; the relative dielectric constant (ε r ) = 22, the quality factor (Q× f) = 32,500 GHz and the temperature coefficient of resonant frequency (τ f ) = − 79 ppm/ C.  相似文献   

10.
In this study, in order to develop the composition ceramics for multilayer piezoelectric actuator, PNN substituted PMN-PZT ceramics were fabricated using Li2CO3 and Na2CO3 as sintering aids, and their piezoelectric and dielectric characteristics were investigated. With the increase of the amount of PNN substitution, dielectric constant (εr), electromechanical coupling factor (k p), and piezoelectric constant (d 33) of specimens showed the maximum value at each sintering temperature, and crystal structure changed from tetragonal to rhombohedral. At the sintering temperature of 950C, the density, εr, k p, d 33, Qm and Tc of 12 mol% PNN substituted PMN-PNN-PZT composition ceramics showed the optimal values of 7.79 g/cm3, 1160, 0.599, 419pC/N, 894 and 332C, respectively, for low loss multilayer piezoelectric actuator application.  相似文献   

11.
Microwave dielectric properties of low temperature sintering ZnNb2O6 ceramics doped with CuO-V2O5-Bi2O3 additions were investigated systematically. The co-doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of ZnNb2O6 ceramics from 1150 to 870C. The secondary phase containing Cu, V, Bi and Zn was observed at grain boundary junctions, and the amount of secondary phase increased with increasing CuO-V2O5-Bi2O3 content. The dielectric properties at microwave frequencies (7–9 GHz) in this system exhibited a significant dependence on the relative density, content of additives and microstructure of the ceramics. The dielectric constant ( r) of ZnNb2O6 ceramics increased from 21.95 to 24.18 with increasing CuO-V2O5-Bi2O3 additions from 1.5 to 4.0 wt%. The quality factors (Q× f) of this system decreased with increasing CuO-V2O5-Bi2O3 content and ranged from 36118 to 67100 GHz for sintered ceramics, furthermore, all Q× f values of samples with CuO-V2O5-Bi2O3 additions are lower than that of un-doped ZnNb2O6 ceramics sintered at 1150C for 2 h. The temperature coefficient of resonant frequency ( f) changed from –33.16 to –25.96 ppm/C with increasing CuO-V2O5-Bi2O3 from 1.5 to 4.0 wt%  相似文献   

12.
Effect of SnO2 addition on the crystal structure/microstructure and the related microwave dielectric properties of the Ba2Ti9O20 were systematically investigated. Incorporation of SnO2 markedly stabilized the phase constituent and microstructure for the Ba2Ti9O20 such that high quality materials can be obtained in a much wider processing window. The sintered density of the Ba2Ti9O20 increased linearly, but the microwave dielectric constant (K) decreased monotonically, with the SnO2 doping concentration. The quality factor (Qxf) of the materials increased firstly due to the addition of SnO2, but decreased slightly with further increase in SnO2 content. The best microwave dielectric properties obtained are K = 38.5 and Qxf = 31,500 GHz, which occurs for the 0.055 mol SnO2-doped and 1350 °C/4 h sintered samples. These properties are markedly better than those for undoped materials (K = 38.8 and Qxf = 26,500 GHz).  相似文献   

13.
Ferroelectric Si-doped (Bi,Nd)4Ti3O12 thin films have been prepared on Pt/TiOx/SiO2/Si substrates through metal-organic compounds by the chemical solution deposition. The Bi3.25Nd0.75Ti2.9Si0.1O12 (BNTS) precursor films were found to crystallize into the Bi-layered perovskite Bi4Ti3O12 single-phase above 600C. The synthesized BNTS films revealed a random orientation having a strong 117 reflection. The BNTS thin films prepared between 600C and 700C showed well-saturated P-E hysteresis loops with P r of 13–14 μ C/cm2 and E c of 100–110 kV/cm at an applied voltage of 5 V. The surface roughness of the BNTS thin films was improved by Si doping compared with that of undoped Bi3.35Nd0.75Ti3O12 films.  相似文献   

14.
The sintering behavior, structures and microwave dielectric properties in a rutile solid solution system—(AxNb2x)Ti1–3xO2 (A=Cu, Ni)—were investigated and the samples were prepared by conventional solid state reaction method. Single phase of tetragonal rutile structure has been obtained through the entire range of compositions (0.02 ≤ x ≤ 0.20). The sintering temperature was lowered to 900°C by (Cu x /3Nb2x/3)4+ substituting for Ti4+ in the solid solution. Comparing with that of rutile TiO2 (465 ppm/°C), the temperature coefficient of resonant frequency (TCF) of the rutile solid solution is much lower (about 250 ppm/°C), and the dielectric constant and the quality factor (Qf value) of the solid solution are about 70~80 and 7,000G Hz. The substitution of (Cu x /3Nb2x/3)4+or (Ni x /3Nb2x/3)4+ for Ti4+ in the solid solution improved the microwave dielectric properties of the rutile TiO2 ceramics.  相似文献   

15.
Co-modification of Ba5NdTi3Ta7O30 dielectrics ceramics was investigated through Pb substitution for Ba and introducing Bi4Ti3O12 secondary phase. The dielectric constant increased from 150 to 283, the temperature coefficient of the dielectric constant decreased from –2500 ppm/°C to –1279 ppm/°C, and the dielectric loss decreased to 0.0007 at 1 MHz. Meanwhile, the bi-phase ceramics were investigated to achieve temperature stable ceramics with high dielectric constant and low dielectric loss. As the composition x varied from 0.4 to 0.7 for (1 – x)(Ba0.8Pb0.2)5NdTi3Ta7O30/xBi4Ti3O12, the temperature coefficient of the dielectric constant changed from negative to zero to positive.  相似文献   

16.
ZnNb2O6-TiO2 mixture thin films with multilayer structures were fabricated via a sol-gel spin coating process. TiO2 layers were deposited on the pre-crystallized ZnNb2O6 layers in order to suppress the formation of the ixiolite phase which always forms in the bulk system. The phase constitution of the thin films, confirmed by X-ray diffraction (XRD), could be controlled by the annealing temperatures, which, in turn, influenced the dielectric properties of the thin films. TiO2 layers crystallized as the anatase phase and then transformed to the rutile phase at temperatures higher than 725C. Dielectric constants of the mixture thin films, measured at 1 MHz with an MIM (metal-insulator-metal) structure, increased from 27 to 41 with dielectric losses below 0.005 as the annealing temperature increased from 700C to 900C. The increase in the dielectric constants was understood to originate from the increasing amounts of the rutile phase. Temperature coefficients of capacitance (TCC) were also measured between 25C and 125C, which showed a decreasing manner from positive values to negative values with increasing annealing temperatures. When annealed at 850C, the TCC of the thin films could be tuned to be approximately 0 ppm/oC with dielectric constant and dielectric loss of 36 and 0.002, respectively.  相似文献   

17.
Bi4Ti3O12 thin films are deposited on ITO/glass and Pt/Ti/Si(100) substrates by R.F. magnetron sputtering at room temperature. The films are then heated by a rapid thermal annealing (RTA) process conducted in oxygen atmosphere at temperatures ranging from 550–700C. X-ray diffraction examination reveals that the crystalinity of the films grown on Pt/Ti/Si is better than that of the films grown on ITO/glass under the same fabrication conditions. SEM observation shows that the films grown on Pt/Ti/Si are denser than those grown on ITO/glass substrates. Interactive diffusion between the Bi4Ti3O12 film and the ITO film increases with the increase of annealing temperature. The optical transmittance of the thin film annealed at 650C is found to be almost 100% when the effect of the ITO film is excluded. The relative dielectric constants, leakage currents and polarization characteristics of the two films are compared and discussed.  相似文献   

18.
Forsterite ceramics for millimeterwave dielectrics   总被引:1,自引:0,他引:1  
The wireless communications have been tremendously developed in the recent ubiquitous age. The utilizable frequency region has been expanded to millimeterwaves because of shortage of conventional frequency regions. For the ultra high frequencies of millimeterwaves, dielectrics with ultra high quality factor Q and low dielectric constant ε r are desired. Low ε r is necessary to short the delay time of signals and to make devices small in size. Silicates for candidate of millimeterwave materials have low dielectric constant, because of silica-oxygen tetrahedra composed of half covalent bonds. Forsterite (Mg2SiO4) as such kind of silicates has high Qf of 270000 GHz and low ε r of 6.8. The temperature coefficient of resonant frequency τ f was improved by adding rutile TiO2 with high τ f of plus 450 ppm/C. In this paper, these results for forsterite are summarized.  相似文献   

19.
This study examined the effect of spark plasma sintering (SPS) on the densification behavior and resulting dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–35 mol% PbTiO3 ceramics with a 5 mol% excess of PbO. Through normal sintering at 1200C, the density of the specimen reached only 92% of the theoretical density (TD). However, with the SPS treatment, the density of the PMN-PT ceramics increased to more than 99% of the TD at 900C, and maintained over 98% of the TD during subsequent heat-treatment at 1200C for 10 h. The increased density of the Pb(Mg1/3Nb2/3)O3–35 mol% PbTiO3 ceramics resulted in an improvement in the dielectric and piezoelectric properties. The SPS treatment was also successfully applied to the densification of a PMN-PT single crystal grown on a BaTiO3 seed crystal using a solid-state crystal growth (SSCG) process.  相似文献   

20.
The efficiency of simultaneous application of chemically-derived starting powders and melt-forming sintering aids in low temperature sintering has been demonstrated. Doping of cryochemically processed BiNbO4 powders with CuO/V2O5 causes reducing sintering temperatures from 850–900C to 700–720C. Similar doping of Zn3Nb2O8 fine powders allows to obtain ceramics with density 97–98% and Q × F values up to 40 000 GHz at T > 720C. The sintering of solution-derived BaCeO3 powders doped with CuO results in dense ceramics at T = 1000C. Morphological evolution during sintering was observed using hot stage SEM. Low temperature liquid phase sintering of fine powders is rather sensitive to the traces of secondary phases and to the micromorphology of starting powders though observed reduction of sintering temperatures is substantially larger than for traditional liquid phase sintering of coarse-grained oxide powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号