共查询到20条相似文献,搜索用时 0 毫秒
1.
The cutting heat dissipation in chips, workpiece, tool and surroundings during the high-speed machining of carbon steel is quantitatively investigated based on the calorimetric method. Water is used as the medium to absorb the cutting heat; a self-designed container suitable for the high-speed lathe is used to collect the chips, and two other containers are adopted to absorb the cutting heat dissipated in the workpiece and tool, respectively. The temperature variations of the water, chips, workpiece, tool and surroundings during the closed high-speed machining are then measured. Thus, the cutting heat dissipated in each component of the cutting system, total cutting heat and heat flux are calculated. Moreover, the power resulting from the main cutting force is obtained according to the measured cutting force and predetermined cutting speed. The accuracy of cutting heat measurement by the calorimetric method is finally evaluated by comparing the total cutting heat flux with the power resulting from the main cutting force. 相似文献
2.
3.
This paper proposes an analytical cutting forces model based on an extension of the Oxley's machining theory (OMT) to high-speed machining of ductile and hard metals. In this model, the materials' behavior was modeled using the Marusich's constitutive equation (MCE). Furthermore, The OMT was modified to be able to capture the effects of the cutting tool edge radius and the burnishing phenomenon by implementing a variable rake angle equation and the Briks criterion, respectively. The predictive model was validated using experimental data obtained during the orthogonal machining of two aluminum alloys (AA6061-T6 and AA7075-T651) and induction-hardened AISI4340 steel (58-60 HRC). The results showed that the predicted and experimental cutting forces were in reasonable agreement for all tested materials. The strain rate constant in the primary shear zone (C0) was found to be significantly sensitive to the cutting conditions and work material, and its effect on the predicted data was highlighted and discussed in depth. On one hand, it was found that AA6061-T6 is less sensitive to the strain rate compared to the AA7075-T651. On the other hand, all tested materials were found to be more sensitive to the strain rate at low cutting speeds and/or cutting feeds. 相似文献
4.
5.
6.
The cutting temperature and temperature distribution along the rake face of cutting tool and work piece is an essential factor in study of machining processes due to its effect on surface quality, tool life, tolerances, metallurgical behavior and chip-removing rate. Several methods have been introduced to measure temperature during machining, such as the thermocouple technique, infrared camera and metallurgical methods. Each of these methods has some advantages and limitations. In this article, an infrared high-speed sensor with specially designed software has been used to measure the transferred heat to the work piece during high speed machining (HSM) of bronze alloys. The results revealed that this system enhances accuracy and reduces the number of tests required. 相似文献
7.
8.
9.
10.
11.
切削温度与刀具磨损、工件加工表面完整性及加工精度密切相关,其变化规律反映出高速切削过程本质的重要方面。本文应用数值模拟,对高速切削加工过程中切屑、工件和刀具三方面的温度随切削速度、进给量、切削深度的动态变化进行了研究,探讨了其变化规律,其结论有助于优化高速切削工艺及建立高速切削数据库。 相似文献
12.
针对机械加工系统碳排放问题,提出了一种机械加工系统碳排放量化方法.对机械加工系统物料、能源消耗及碳排放特点进行了分析,定义了其广义边界,并对碳排放的多源性进行了论述;对机械加工系统多源碳排放量化方法进行了详细论述,不仅考虑了机械加工设备物料、能源消耗引起的碳排放,而且考虑了切削液、刀具等辅助物料及废屑处理引起的碳排放,分别给出了其量化方法并对量化方法中的关键要素进行了研究;通过一个具体案例验证了该量化方法的可行性. 相似文献
13.
14.
15.
16.
17.
18.
针对使用传统方法加工滑枕铣床升降台存在质量差、效率低的问题,将高速切削加工技术引入滑枕铣床升降台的加工过程中,并对滑枕铣床升降台加工工艺进行了改进.高速切削加工切削系统的工作频率远高于机床的低阶固有频率,振动较小,大大降低了加工表面粗糙度,提高了加工质量.基于高速切削加工转速高和切削力小的特点,取消滑枕铣床升降台半精加工工序,提高了加工效率. 相似文献
19.
不锈钢具有韧性大、热强度高、导热系数低、加工硬化严重等特性,机械加工困难。为了提高不锈钢切削性能,选择的刀具材料一般为硬质合金和高速钢材料两种,对于形状复杂的刀具,主要采用高速钢材料。刀具几何角度的选择包括前角、后角、主偏角、刃倾角的选择,以车刀为例,分别进行了介绍。另外,合理选择了切削用量和切削液。通过对加工过程中各项参数的优化,可有效提高切削不锈钢零件的加工效率和产品质量。 相似文献
20.
气体流量测量广泛应用于呼吸监测、管道运输等领域。本研究细致分析了MEMS量热式传感器温度一维分布模型中的热边界层参数,进行了相应的经验修正。并且在温度一维分布模型的基础上,针对具有两对上下游测温电阻芯片结构的MEMS量热式传感器,提出了一种新的传感器输出电压关于气体流量的半修正理论模型。该理论模型能够适用于不同类型的单介质气体。同时,开展了N2、CO2流量测量实验,与理论模型进行对比,证明所提出的理论模型可以正确预测不同气体介质的流量,其中针对CO2测量介质的均方根误差为0.15%。此外,结合理论分析,提出了一种高精度,拟合形式简单、针对确定气体适用性更好的测量模型,其中针对CO2测量介质的均方根误差为0.05%。 相似文献