首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过球磨制备MgH2,MgHz-GMgHz-graphene储氢材料,研究石墨烯添加对MgH2吸放氢性能的影响。结果表明,石墨和石墨烯对球磨过程中MgHz的细化有促进作用;石墨和石墨烯的添加对MgH2的吸放氢动力学有良好的改善作用;特别是MgH2-graphene储氢材料有优良的吸放氢性能,在573K下于5,2min内放氢和再吸氢质量分数都为7.0%,且其放氢起始温度较MgH2的低50K。  相似文献   

2.
正中国科学院大连化学物理研究所的研究人员在储氢材料研究方面取得新进展,通过多组分氢化物复合,显著改善了Mg(NH_2)_2-LiH储氢材料的吸脱氢热力学和动力学性能,实现了100℃以下可逆吸脱氢。在此前研究人员设计的金属氨基化合物储氢体系中,Mg(NH_2)_2-LiH材料具有较高的储氢容量和较好的可逆性,被认为是最具车载实用前景的储氢材料之一。但该体系需要较高的吸氢温度(150℃)和放氢温度(180℃),利用燃料电  相似文献   

3.
采用机械球磨LiNH2/MgH2混合物(摩尔比2/1.1)制备一种新型储氢材料Li-Mg-N-H.在氩气保护下,将样品分别球磨2 h(1 #)、5 h(2#)和10 h(3#).DSC测试结果表明,3种样品均可在170℃左右开始快速放氢,且随着球磨时间增加,放氢温度呈下降趋势.吸放氢测试结果显示200℃时,样品在6 MPa最大吸放氢量为4.4%,0.1 MPa放氢压力条件下最大放氢容量为3.39%,上述反应在1 h内可完成总量的80%以上;随着球磨时间增加,样品活性增大,首次吸放氢循环即可达到最大容量,但球磨时间过长导致样品吸放氢容量的下降.运用XRD考察了样品吸放氢循环前后的物相变化.  相似文献   

4.
为改善LiBH4的储氢性能,采用球磨法制备2LiBH4/LiAlH4/0.5CaC2复合体系,利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和压力-组成-温度测试仪(PCT),研究复合体系的放/吸氢性能及反应机制。结果表明:2LiBH4/LiAlH4/0.5CaC2复合体系在440℃前结束放氢,总放氢量约为6.2%(质量分数);放氢过程中CaC2直接参与反应,使体系反应失稳而改善放氢性能;复合体系在450℃、9MPa条件下再吸氢12h的吸氢量为5.4%(质量分数),与纯LiBH4相比,可逆再吸氢性能得到明显改善。  相似文献   

5.
以Fe3O4为原料,以金属Mo、Al、Cr、W可溶盐为添加物,通过共沉淀法制备单金属添加的改性铁氧化物储氢材料.用固定床-流动气相循环方法,研究了材料的储氢性能.结果表明添加了Mo金属的Fe3O4的4次循环的放氢温度最低,为310~314℃(速率为300 μmol/(min·Fe-g)时),低于目前同类最好的储氢材料近50℃左右,已接近IEA标准.  相似文献   

6.
以Cu、Ti、石墨、金刚石粉体为原料,通过自蔓延高温反应烧结技术制备了Cu/TiC复合结合剂金刚石材料。采用X射线衍射、扫描电镜及能谱仪分析试样。研究结果表明,烧结得到Cu、TiC、CuTiX多相复合结合剂金刚石材料,当Cu含量较高(≥70%)时,产物中主相为Cu,同时含有少量TiC,基体与金刚石结合较差;当Cu含量较低(≤50%)时,产物主相为TiC和CuTiX,铜含量较少,基体与金刚石结合良好。  相似文献   

7.
机械球磨制备的2MgH2-Si试样在573 K下1 500 min内放氢质量分数为3.67%,放氢平台压高达1.075 MPa。Si的添加不但改善了MgH2的放氢热力学性能,而且也提高了放氢动力学性能。为了研究制约Mg2Si可逆储氢的原因,对球磨Mg2Si-10%TiF3(质量分数)在不同温度和氢压下氢化12 h试样的相结构进行分析。结果表明,试样都由Mg2Si单相组成。Mg2Si吸氢反应同时受其氢化反应热力学和动力学控制。  相似文献   

8.
高压电触头材料用90W-10Cu难熔合金由于高熔点和高比重差异,在高温长时间的粉末冶金过程中存在致密化困难和晶粒异常长大而影响其性能。新型振荡热压烧结(Hot oscillatory pressure, HOP)技术在常规热压烧结基础上用一定频率的循环振荡单轴压力代替静单轴压力,可快速促进陶瓷等材料的致密化。因此,为了研究振荡热压烧结对90W-10Cu难熔合金的低温烧结效果,本文将振荡热压烧结技术应用到90W-10Cu(质量分数)难熔合金的制备中,研究了烧结温度(1000-1300 ℃)对其微观组织、致密度、晶粒尺寸、硬度及电导率性能的影响。研究结果发现振荡热压烧结90W-10Cu合金由W相基体和Cu相粘结相组成。随着烧结温度的升高,90W-10Cu难熔合金的致密度逐渐增大,在烧结温度最高为1300 ℃时,其致密度最高可达到99.35%,同等温度下均高于热压烧结样品的致密度;而晶粒尺寸仅为4.97 μm左右,没有异常长大,达到了细化晶粒的效果;同时其W晶粒邻接度逐渐减低,合金的微观组织均匀性得到优化和改善;维氏硬度和电导率分别达到225.78 HV30和27.88% IACS,高于同等温度甚至高100 ℃时的热压烧结体,性能得到显著提升,达到了低温烧结效果。结果表明振荡热压烧结能够有效地促进90W-10Cu难熔合金的致密化,降低烧结温度和抑制晶粒生长,显著优化其微观组织均匀性,有利于在较低温度下获得高致密度、晶粒细小、高硬度和高电导率的90W-10Cu难熔合金材料。  相似文献   

9.
针对LiAHl4作为储氢材料在放氢过程中存在放氢温度过高、放氢动力学缓慢的问题,提出了制备NiTOi3并利用机械球磨方式将其掺杂到LiAHl4的改性方法。通过升温放氢实验和等温放氢实验,研究NiTOi3的掺杂对LiAHl4放氢性能的影响,结果表明,掺杂w(NiTOi3)=6%Li AHl4的起始放氢温度降至73℃,比纯Li AHl4降低了120℃;在180℃等温放氢测试中,掺杂w(NiTOi3)=6%Li AHl 4在60min能放出w(H2)=4.70%,纯Li AHl4在同条件下基本不放氢。活化能测试结果表明,掺杂w(NiTOi3)=6%LiAHl4的前两步放氢活化能分别降至71.56、122.49k J/m ol,验证了放氢动力学性能提升的结果。通过XRD分析认为球磨过程破坏了...  相似文献   

10.
以Mg和Fe元素粉末为原料,在双行星式球磨机的氢气气氛中反应球磨,合成Mg2FeH6储氢材料。探讨分别采用Mg和Fe原料配比为化学计量(2:1)和非化学计量(3:1)直接反应球磨,以及采用将Mg和Fe混合粉末在氩气气氛中预磨20h后再通氢反应等球磨方式。研究结果表明:Mg和Fe以非化学计量比(3:1)在氢气气氛中直接球磨所得样品,Mg2FeH6的合成产率最高,达到83.7%;DSC和TGA测试显示样品实际放氢量为2.91%,Mg和Fe以化学计量比(2:1)直接反应球磨得到的Mg2FeH6具有最低的起始放氢温度204.4℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号