首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene (fumABst) encoding an oxygen-labile fumarase of Bacillus stearothermophilus has been cloned and sequenced. The structural gene (1542 bp) encodes a product (FumABst) of M(r) 56,788 containing 514 amino acid residues. The amino acid sequence is 23% identical (37% similar) to FumA and FumB, the labile [4Fe-4S]-containing fumarases (Class I enzymes) of Escherichia coli. It exhibits no significant similarity to FumC and CitG, the stable fumarases (Class II enzymes) of E. coli and Bacillus subtilis (respectively). Enzymological studies indicated that FumABst resembles the iron-sulphur-containing fumarases in being dimeric (M(r) 2 x 58,500), oxygen labile and partially reactivated by Fe2+ plus DTT. The fumABst gene is the first gene encoding a Class I fumarase to be characterized in any organism other than E. coli. Enzymological and DNA-hybridization studies further indicated that B. stearothermophilus resembles E. coli in containing an oxygen-stable fumarase (Class II enzyme). Sequence comparisons revealed significant similarities between the Class I fumarases and the products of adjacent open-reading frames (orfZ1 and orfZ2) located upstream of the macromolecular synthesis operon (rpsU-dnaG-rpoD) at 67 min in the E.coli linkage map. Located downstream of fumABst, there is an unidentified gene (orf2), which is homologous to the rhizobial nodB genes involved in the initiation of root nodule formation.  相似文献   

2.
A recombinant baculovirus was designed to express short porcine type I interferon (spI interferon), a novel and atypical type I interferon that was recently described as the product of a gene transcribed in pig trophoblast at the time of implantation in the uterus [Lefèvre, F. & Boulay, V.C. (1993) J. Biol. Chem. 268, 19,760-19,768]. The recombinant protein, secreted into the culture medium of Sf9 cells at 3 days post infection (60,000 IU/ml), was purified by ion-exchange and reverse-phase HPLC. N-terminal sequencing confirmed the predicted signal peptide cleavage site and therefore the size of the mature protein (149 amino acids), the shortest of all reported type I interferons. Purified spI interferon, with a specific antiviral activity using Madin-Darby bovine kidney cells of 3.7 x 10(7) IU/mg, is an N-glycosylated monomer of 19 kDa that possesses several physicochemical characteristics of interferons: (a) disulfide bonds are necessary for bioactivity; spI interferon is thermolabile, stable at pH 2, and able to renature after complete denaturation (1% 2-mercaptoethanol, 1% SDS, and 5 M urea); (b) the carbohydrate chain is not essential for bioactivity since no loss of antiviral activity is observed following complete deglycosylation. In this study, antiviral and anti-proliferation activities of spI interferon in cell culture were compared with those of other interferons, especially with porcine type 1 interferon-alpha. A major difference with porcine type 1 interferon-alpha was that spI interferon was not active on human cells in either test, and it was relatively more active on pig cells compared to bovine cells than porcine type 1 interferon-alpha. Serological cross-neutralization results obtained with anti-(spI interferon) serum confirmed that several members of interferon families are not antigenically related to spI interferon, in agreement with previous observations; this provides further evidence that spI interferon could represent a new family of type I interferon.  相似文献   

3.
The human mitochondrial ND1/3460 mutation changes Ala52 to Thr in the ND1 subunit of Complex I, and causes Leber's hereditary optic neuropathy (LHON) [Huoponen et al. (1991) Am. J. Hum. Genet. 48, 1147]. We have used a bacterial counterpart of Complex I, NDH-1 from Paracoccus denitrificans, for studying the effect of mutations in the ND1 subunit on the enzymatic activity. The LHON mutation as well as several other mutations in strictly conserved amino acids in its vicinity were introduced into the NQO8 subunit of NDH-1, a bacterial homologue of ND1. The enzymatic activity of the mutants in the presence of hexammineruthenium (rotenone-insensitive) and ubiquinone-1 (rotenone-sensitive) were assayed. In addition, the kinetics of the interaction of selected mutant enzymes with ubiquinone-1, ubiquinone-2, and decylubiquinone was studied. The results suggest that the mutated residues play an important role in ubiquinone reduction by Complex I.  相似文献   

4.
The circular, 17,443 nucleotide-pair mitochondrial (mt) DNA molecule of the sea anemone, Metridium senile (class Anthozoa, phylum Cnidaria) is presented. This molecule contains genes for 13 energy pathway proteins and two ribosomal (r) RNAs but, relative to other metazoan mtDNAs, has two unique features: only two transfer RNAs (tRNA(f-Met) and tRNA(Trp)) are encoded, and the cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) genes each include a group I intron. The COI intron encodes a putative homing endonuclease, and the ND5 intron contains the molecule's ND1 and ND3 genes. Most of the unusual characteristics of other metazoan mtDNAs are not found in M. senile mtDNA: unorthodox translation initiation codons and partial translation termination codons are absent, the use of TGA to specify tryptophan is the only genetic code modification, and both encoded tRNAs have primary and secondary structures closely resembling those of standard tRNAs. Also, with regard to size and secondary structure potential, the mt-s-rRNA and mt-1-rRNA have the least deviation from Escherichia coli 16S and 23S rRNAs of all known metazoan mt-rRNAs. These observations indicate that most of the genetic variations previously reported in metazoan mtDNAs developed after Cnidaria diverged from the common ancestral line of all other Metazoa.  相似文献   

5.
A wide variety of alkyl derivatives of Q2 (6-geranyl-2, 3-dimethoxy-5-methyl-1,4-benzoquinone) and DB (6-n-decyl-2, 3-dimethoxy-5-methyl-1,4-benzoquinone), in which methoxy groups of the 2- and/or 3-positions of the quinone ring were replaced by other bulky alkoxy groups from ethoxy to butoxy, were prepared by novel synthetic procedures. Electron-accepting activities of the bulky quinones were investigated with bovine heart mitochondrial complex I and its counterpart of Paracoccus denitrificans(NDH-1) to elucidate structural and functional features of the quinone reduction site of the enzymes. The bulky quinone analogues served as sufficient electron acceptors from the physiological quinone reduction site of bovine complex I. Considering the very poor activities of even the ethoxy derivatives as substrates for other respiratory enzymes such as mitochondrial complexes II and III [He, D. Y., Gu, L. Q., Yu, L., and Yu, C. A. (1994) Biochemistry 33, 880-884], this result indicated that the quinone reduction site of bovine complex I is spacious enough to accommodate bulky exogenous substrates. In contrast to bovine complex I, bulky quinone analogues served as poor electron acceptors with Paracoccus NDH-1. These observations indicated that bovine complex I recognizes the substrate structure with poor specificity. The substituent effects in the 2- and 3-positions of the quinone ring on the electron-transfer activity with bovine complex I differed significantly between Q2 and DB series despite having the same total number of carbon atoms in the side chain. The inhibitory effect involving Q2 due to its geranyl side chain was markedly diminished by structural modifications of the quinone ring moiety. These findings indicate that the side chain plays a specific role in the redox reaction and that the quinone ring and side-chain moieties contribute interdependently to binding interaction. Moreover, structural dependency of the proton-pumping activity of the quinone analogues was comparable to that of the electron-transfer activity with bovine complex I, indicating that the mechanism of redox-driven proton-pumping does not differ depending upon the substrate structure.  相似文献   

6.
Photosystem I (PS I) reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus elongatus with nonionic detergents, digitonin or sucrose monolaurate, contained eight small subunit polypeptides. Two of the small polypeptides were identified by analysis of their N-terminal amino-acid sequences as the psaF and psaE gene products. Treatment with a cationic detergent, cetyltrimethylammonium bromide, resulted in depletion of five small subunits including the psaF gene product. Five PS I complexes isolated with an anionic detergent, sodium dodecylsulfate, contained zero to four small subunits but were all depleted of the psaF polypeptide. The function of the psaF gene product was examined by measuring reduction kinetics of flash-oxidized P-700 in the presence of different concentrations of cytochrome c-553. Oxidized P-700 was rapidly reduced by the reduced cytochrome in all the PS I complexes that contained, at least, the psaC and psaD polypeptides and the second-order rate constants of electron transfer from cytochrome c-553 to P-700 were essentially the same between PS I complexes that contained the psaF polypeptide and those that lost this polypeptide. Thus, the psaF polypeptide is not required for the bimolecular reaction between P-700 and cytochrome c-553. Mg2+ had a moderate stimulating effect on the rate of P-700 reduction whether PS I complexes were associated with the psaF gene product or not. The function of this subunit polypeptide is discussed.  相似文献   

7.
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kr?ger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.  相似文献   

8.
Missense mutations as well as a null allele of the human glycine receptor alpha1 subunit gene GLRA1 result in the neurological disorder hyperekplexia [startle disease, stiff baby syndrome, Mendelian Inheritance in Man (MIM) #149400]. In a pedigree showing dominant transmission of hyperekplexia, we identified a novel point mutation C1128A of GLRA1. This mutation encodes an amino acid substitution (P250T) in the cytoplasmic loop linking transmembrane regions M1 and M2 of the mature alpha1 polypeptide. After recombinant expression, homomeric alpha1(P250T) subunit channels showed a strong reduction of maximum whole-cell chloride currents and an altered desensitization, consistent with a prolonged recovery from desensitization. Apparent glycine binding was less affected, yielding an approximately fivefold increase in Ki values. Topological analysis predicts that the substitution of proline 250 leads to the loss of an angular polypeptide structure, thereby destabilizing open channel conformations. Thus, the novel GLRA1 mutant allele P250T defines an intracellular determinant of glycine receptor channel gating.  相似文献   

9.
Poly (2'-azido-2'-deoxyinosinic acid), [poly (Iz)], was synthesized from 2'-azido-2'-deoxyinosine diphosphate by the action of polynucleotide phosphorylase. Poly (Iz) has UV absorption properties similar to poly (I) and hypochromicity of 11% at 0.15M Na+ and neutrality. In solutions of high Na+ ion concentration, poly (Iz) forms a multi-stranded complex and its Tm at 1.0M Na+ ion concentration was 43 degrees. Upon mixing with poly (C), poly (Iz) forms a 1:1 complex having a Tm lower than that of poly (I)-poly (C) complex in the same conditions. The effect of substitution at the 2'-position of the poly (I) strand was discussed in relation to the interferon-inducing activity.  相似文献   

10.
The pyrazinamidase from Mycobacterium smegmatis was purified to homogeneity to yield a product of approximately 50 kDa. The deduced amino-terminal amino acid sequence of this polypeptide was used to design an oligonucleotide probe for screening a DNA library of M. smegmatis. An open reading frame, designated pzaA, which encodes a polypeptide of 49.3 kDa containing motifs conserved in several amidases was identified. Targeted knockout of the pzaA gene by homologous recombination yielded a mutant, pzaA::aph, with a more-than-threefold-reduced level of pyrazinamidase activity, suggesting that this gene encodes the major pyrazinamidase of M. smegmatis. Recombinant forms of the M. smegmatis PzaA and the Mycobacterium tuberculosis pyrazinamidase/nicotinamidase (PncA) were produced in Escherichia coli and were partially purified and compared in terms of their kinetics of nicotinamidase and pyrazinamidase activity. The comparable Km values obtained from this study suggested that the unique specificity of pyrazinamide (PZA) for M. tuberculosis was not based on an unusually high PZA-specific activity of the PncA protein. Overexpression of pzaA conferred PZA susceptibility on M. smegmatis by reducing the MIC of this drug to 150 micrograms/ml.  相似文献   

11.
The aim of the present work was to study the binding of [125I]-BLGA (beta-lactoglobulin variant A) to the plasma membrane fraction of hybrid cells. This binding increased as a function of time with on-rate and off-rate constant at 4.47 +/- 0.18 x 10(6) M-1 min-1 and 0.17 +/- 0.07 min-1, respectively (n = 3). The saturation study showed a single binding site type corresponding to a Kd at 8.26 +/- 2.98 nM and 14.02 +/- 2.61 x 10(12) sites per mg of the plasma membrane protein (n = 3). Competitive of binding BLGA was observed with BLGA, complexed with retinol and also with RBP (retinol-binding protein). Gel filtration of [125I]-BLGA incubated with Triton X-100 solubilized membrane showed the formation of a ligand-receptor complex. Cross-linking of the tracer to plasma membrane showed a complex with a M(r) at 69 kDa, suggesting a receptor M(r) of 51 kDa, as seen by autoradiography of SDS-PAGE.  相似文献   

12.
To reliably identify the residual tetracycline antibiotics (TCs), oxytetracycline (OTC), tetracycline, chlortetracycline (CTC) and doxycycline (DC), in bovine tissues, we have established a confirmation method using electrospray ionization liquid chromatography-tandem mass spectrometry (ESI LC-MS-MS) with daughter ion scan. All TCs gave [M+H-NH3]+ and [M+H-NH3-H2O]+ as the product ions, except for DC when [M+H]+ was selected as the precursor ion. The combination of C18 cartridge clean-up and the present ESI LC-MS-MS method can reliably identify TCs fortified at a concentration of 0.1 ppm in bovine tissues, including liver, kidney and muscle, and has been successfully applied to the identification of residual OTC in bovine liver and residual CTC in bovine muscle samples previously found at concentrations of 0.58 ppm and 0.38 ppm by LC, respectively.  相似文献   

13.
A sensitive quantitative analysis by thin layer chromatography was developed for the determination of platelet activating factor (PAF) and other phospholipids in human saliva. The saliva sample (0.6 ml) was pretreated by diatomite column extraction with chloroform-methanol (95:5, v/v). The extract (20 microliters) was spotted on a TLC plate. The mobile phase was chloroform-methanol-water (65:35:7, v/v). The development proceeded until the mobile phase front reached 8 cm from the spotted point, this process usually required 30 min. After development, phospholipase C and alkaline phosphatase solutions were sprayed on the TLC plate at 45 degrees C to hydrolyze phospholipids. By spraying a mixture of ammonium molybdate and Malachite Green, the produced phosphate was changed to molybdophosphate-Malachite Green aggregate, which gave a blue green spot. The colored spots were scanned at 620 nm by chromatoscanner. A linear relationship was obtained between peak area and PAF concentration in the range from 2 to 100 pmol/spot with a relative standard deviation of 2% (n = 7). By this procedure, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine in human saliva were also determined sensitively. PAF levels in the range from 40 to 300 ng/ml were found in normal human salivas. Although differences in the total amounts of phospholipids in saliva were found for each healthy volunteer and sampling time, the composition of phospholipids was proved to be virtually constant.  相似文献   

14.
The yeast Saccharomyces cerevisiae mRNA capping enzyme is composed of two subunits of alpha (52 kDa, mRNA guanylyltransferase) and beta (80 kDa, RNA 5'-triphosphatase). We have isolated the alpha subunit gene (CEG1) by immunological screening. In this report, with the aid of partial amino acid sequences of purified yeast capping enzyme, we isolated the gene, designated CET1, encoding the S. cerevisiae capping enzyme beta subunit. Amino acid sequence analysis revealed that the gene encodes for 549 amino acids with a calculated M(r) of 61,800 which is unexpectedly smaller than the size estimated by SDS-PAGE. Gene disruption experiment showed that CET1 is essential for yeast cell growth. The purified recombinant CET1 gene product, Cet1, exhibited an RNA 5'-triphosphatase activity which specifically removed the gamma-phosphate from the triphosphate-terminated RNA substrate, but not from nucleoside triphosphates, confirming the identity of the gene. Interaction between the Cet1 and the Ceg1 was also studied by the West-Western procedure using recombinant Ceg1-[32P]GMP as probe.  相似文献   

15.
The ryanodine receptor (RYR)/Ca2+ release channel of avian cardiac muscle was localized by immunocytochemical techniques and biochemically characterized using isolated membrane and receptor protein fractions. Monoclonal antibody C3-33 raised against the canine cardiac RYR bound to the junctional sarcoplasmic reticulum of pigeon and finch hearts, both at peripheral couplings and at extended junctional sarcoplasmic reticulum (EJSR). Immunoblots of sarcoplasmic reticulum vesicles from pigeon and finch hearts showed this antibody recognized a single high molecular weight protein, which co-migrated with the canine M(r) 565,000 RYR/Ca2+ release channel polypeptide. The pigeon heart RYR bound [3H]ryanodine with high affinity in a Ca(2+)-dependent manner, comparable to the canine cardiac RYR. Purification of the pigeon RYR yielded a 30 S protein complex, which bound the maximum calculated amount of [3H]ryanodine ((440 +/- 60) pmol/mg protein), assuming one high affinity site/tetrameric 30 S RYR comprised of M(r) 565,000 polypeptides. Autoradiography of isolated finch cardiac myocytes indicated [3H]ryanodine binding throughout the cells. These results suggest that avian heart contains a single population of RYRs, and thereby support the hypothesis that avian EJSR contains functional calcium release channels which, because of the absence of transverse tubules, can be located micrometers away from the surface membrane in avian heart.  相似文献   

16.
A liquid chromatographic method with UV detection at 325 nm was developed for simultaneous determination of amoxicillin, ampicillin, penicillin G, and cloxacillin residues in bovine muscle tissue as their mercaptide derivatives. The penicillins are extracted from bovine tissues with 0.1 M phosphate buffer (pH 8.5), cleaned up on a t-C18 Sep-Pak cartridge, and eluted with 2 mL acetonitrile. After the acetonitrile in the eluate is evaporated to dryness, the residue is dissolved in 200 microL (40 + 60, v/v) acetonitrile-phosphate buffer (pH 6.5) and derivatized with acetic anhydride and mercuric chloride in the presence of 1,2,4-triazole at 65 degrees C for 30 min. Gradient analysis on a Spherisorb 5 microns ODS(2) (octadecyl silane) analytical column using a binary mobile phase consisting of acetonitrile and 0.10 M phosphate buffer (pH 6.5) in the presence of 0.0157 M sodium thiosulfate at 1 mL/min permits determination of each intact penicillin in bovine muscle tissue at > or = 10 ppb with recoveries > or = 72%. This laboratory method provides detection sensitivities equivalent to those of rapid tests used for screening beta-lactam drug residues in bovine tissue samples for regulatory enforcement.  相似文献   

17.
The SPECT radioligand, 3-quinuclidinyl-4-[123I]iodobenzilate ([123I]IQNB), binds to muscarinic receptors and has generated interest as a potential agent for clinical SPECT. Unfortunately, cumbersome and inefficient radioiodination procedures have limited the practicality of [123I]IQNB SPECT imaging. METHODS: We report a rapid (5 min) and simple radioiodination procedure for preparing [123I]IQNB from a tri-n-butylstannyl precursor in a no-carrier-added reaction that yields high specific activity with radiochemical yield exceeding 60%. The radiochemical purity of the final product exceeds 95%. RESULTS: We have used this procedure to radioiodinate the four stereoisomers of [123I]IQNB. The procedure is highly reliable and reproducible. SPECT studies on a healthy human volunteer at 1, 2, 6 and 24 hr after injection of each of the four stereoisomers reveal expected differences in the kinetic and binding characteristics of the four stereoisomers. (R,S)-[123I]IQNB appears to be the SPECT agent of choice. CONCLUSION: Radioiodination of [123I]IQNB from our tri-n-butylstannyl precursor is simpler, more efficient and less expensive than previous techniques. The potential exists for a "kit" which would be practical in a typical clinical setting.  相似文献   

18.
We have devised a novel procedure, employing Chaps rather than Triton [Costello B., Chadwick C., Saito A., Chu A., Maurer A., Fleischer S. J Cell Biol 1986; 103: 741-753], for obtaining vesiculated derivatives of the junctional face membrane (JFM) domain of isolated terminal cisternae (TC) from fast skeletal muscle of the rabbit. Enriched JFM is minimally contaminated with junctional transverse tubules. The characteristic ultrastructural features and the most essential features of TC function relating to this membrane domain-i.e. both the Ca(2+)-release system and the Ca2+ and calmodulin (CaM)-dependent protein kinase (CaM I PK) system-appear to be retained in enriched JFM. We show that our isolation procedure, yielding up to a 2.5-fold enrichment in ryanodine receptor (RyR) protein and in the maximum number of high affinity [3H]-ryanodine binding sites, does not alter the assembly for integral proteins associated with the receptor in its native membrane environment, i.e. FKBP-12, triadin and the structurally related protein junction [Jones L.R., Zhang L., Sanborn K., Jorgensen A., Kelley J. J Biol Chem 1995; 270: 30787-30796] having, in common, the property to bind calsequestrin (CS) in overlays in the presence of EGTA. The substrate specificity of endogenous CaM I PK is also the same as that of parent TC vesicles. Phosphorylation of mainly triadin and of a high M(r) polypeptide, and not of the RyR, is the most remarkable common property. Retention of peripheral proteins, like CS and histidine-rich Ca(2+)-binding protein, although not that endogenous CaM, and of a unique set of CaM-binding proteins, unlike that of junctional SR-specific integral proteins, is shown to be influenced by the concentration of Ca2+ during incubation of TC vesicles with Chaps. Characterization of RyR functional behaviour with [3H]-ryanodine has indicated extensive similarities between the enriched JFM and parent TC vessicles, as far as the characteristic bell shaped Ca(2+)-dependence of [3H]-ryanodine binding and the dose-dependent sensitization to Ca2+ by caffeine, reflecting the inherent properties of SR Ca(2+)-release channel, as well as concerning the stimulation of [3H]-ryanodine binding by increasing concentrations of KCl. Stabilizing the RyR in a maximally active state by optimizing concentrations of KCl (1 M), at also optimal concentrations of Ca2+ (pCa 4), rendered the receptor less sensitive to inhibition by 1 microM CaM, to a greater extent in the case of enriched JFM. That was not accounted for by any significant difference in the IC50 concentrations of CaM varying between 40 nM to approximately 80 nM, at low-intermediate and at high KCl concentrations, respectively. Additional results with enriched JFM using doxorubicin, a pharmacological Ca2+ channel allosteric modifier, strengthen the hypothesis that the conformational state at which RyR is stabilized, according to the experimental assay conditions for [3H]-ryanodine binding, directly influences CaM-sensitivity.  相似文献   

19.
The extracellular metalloprotease (SMP 6.1) produced by a soil isolate of Serratia marcescens NRRL B-23112 was purified and characterized. SMP 6.1 was purified from the culture supernatant by ammonium sulfate precipitation, acetone fractional precipitation, and preparative isoelectric focusing. SMP 6.1 has a molecular mass of approximately 50,900 Da by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). The following substrates were hydrolyzed: casein, bovine serum albumin, and hide powder. SMP 6.1 has the characteristics of a metalloprotease, a pH optimum of 10.0, and a temperature optimum of 42 degrees C. The isoelectric point of the protease is 6.1. Restoration of proteolytic activity by in-gel renaturation after SDS-PAGE indicates a single polypeptide chain. SMP 6.1 is inhibited by EDTA (9 micrograms/ml) and not inhibited by antipain dihydrochloride (120 micrograms/ml), aprotinin (4 micrograms/ml), bestatin (80 micrograms/ml), chymostatin (50 micrograms/ml), E-64 (20 micrograms/ml), leupeptin (4 micrograms/ml), Pefabloc SC (2000 micrograms/ml), pepstatin (4 micrograms/ml), phosphoramidon (660 micrograms/ml), or phenylmethylsulfonyl fluoride (400 micrograms/ml). SMP 6.1 retains full activity in the presence of SDS (1% w/v), Tween-20 (1% w/v), Triton X-100 (1% w/v), ethanol (5% v/v), and 2-mercaptoethanol (0.5% v/v). The extracellular metalloprotease SMP 6.1 differs from the serratiopeptidase (Sigma) produced by S. marcescens ATCC 27117 in the following characteristics: isoelectric point, peptide mapping and nematolytic properties.  相似文献   

20.
To clarify the bioenergetic relevance of mtDNA mutations in Leber's hereditary optic neuropathy (LHON), we investigated affected individuals and healthy carriers from six Italian LHON families harboring the 11778/ND4 and the 3460/ND1 mtDNA mutations. The enzymatic activities of mitochondrial complex I and its sensitivity to the potent inhibitors rotenone and rolliniastatin-2 were studied in mitochondrial particles from platelets, in correlation with mtDNA analysis of platelets and leukocytes. In platelets homoplasmic for mutant mtDNA, both 11778/ND4 and 3460/ND1 mutations induced resistance to rotenone and the 3460/ND1 mutation also provoked a marked decrease in the specific activity of complex I. Individuals heteroplasmic in platelets for either mutation showed normal biochemical features, indicating functional complementation of wild-type mtDNA. There was no correlation between the clinical status and mtDNA homo/heteroplasmy in platelets, but the biochemical features correlated with the mitochondrial genotype of platelets. In some cases, the degree of mtDNA heteroplasmy differed in platelets and leukocytes from the same individual with a prevalence of wild-type mtDNA in the platelets. These results imply that biochemical studies on mitochondrial diseases should always be integrated with mtDNA analysis of the same tissue investigated and also suggest that the mtDNA analysis on the leukocyte fraction, as usually performed in LHON, does not necessarily reflect the mutant genotype level of other tissues. The differential tissue heteroplasmy may be more relevant than previously thought in determining disease penetrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号