首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
带积分作用的模糊内模时滞控制器   总被引:3,自引:0,他引:3  
将Smith预估器和内模控制结构结合起来,使用模糊控制器为主控制器,并用积分环节来消除系统所存在的稳态误差,理论分析可以证明,该结构就是内模控制器,无需滤波环节就可以得到良好的鲁棒性,而模糊控制器本身的非线性和鲁棒性也可以改善系统的动态性能和鲁棒性,经仿真研究发现,只要合理调整模糊比例因子和积分因子,该方法可以在一定的模型失配情况下得到比常规IMC更好的控制品质,且无稳态误差。  相似文献   

2.
提出了一类高动态性能切换模糊PID控制器设计方法.通过对传统PID控制中比例控制和微分控制作用的分析,结合模糊PID控制器鲁棒性能和自适应性好的优点,设计了一类新的模糊控制器.由于该类控制器先后经历比例控制,微分控制和模糊PID控制的切换,使被控系统不仅具有一般模糊PID控制器的所具有的良好的鲁棒性能和自适应性,而且与一般模糊控制器相比具有更小的超调量和调节时间,是一类动态性能良好的控制器.最后将该控制器应用于一伺服系统进行仿真对比,并给出了Simulink仿真框图.仿真结果说明了该控制器的优越性.  相似文献   

3.
This paper focuses on the current control of a permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and external disturbances. To improve the performance of the PMSM current loop in terms of the speed of response, tracking accuracy, and robustness, a hybrid control strategy is proposed by combining the adaptive sliding mode control and sliding mode disturbance observer (SMDO). An adaptive law is introduced in the sliding mode current controller to improve the dynamic response speed of the current loop and robustness of the PMSM drive system to the existing parameter variations. The SMDO is used as a compensator to restrain the external disturbances and reduce the sliding mode control gains. Experiments results demonstrate that the proposed control strategy can guarantee strong anti-disturbance capability of the PMSM drive system with improved current and speed-tracking performance.  相似文献   

4.
In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system.  相似文献   

5.
This paper presents a disturbance observer and adaptive controller design for a direct drive motion control system. An indirect adaptive controller is implemented to achieve desired tracking performance as well as deal with system parameters variation. To reduce tracking errors, a newly designed adaptive feed-forward controller is proposed based on an on-line estimated inverse model of the linear motor drive system. A digital disturbance observer is implemented to be included in the proposed feedback-feed-forward control structure to compensate for the undesired nonlinearity and external load disturbance of the direct drive system. Experimental results show that this control scheme can achieve superior contouring accuracy, disturbance rejection and robustness under the influence of friction and cogging force.  相似文献   

6.
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection.  相似文献   

7.
为实现高速开关阀控气动位置伺服系统的精确控制,以4个高速开关阀控制气缸的结构作为研究对象,提出一种模糊自适应PID算法以提高其控制精度.介绍了系统的结构与工作原理,并在此基础上建立系统数学模型.针对常规PID控制器难以适应多工况位置跟踪的问题,利用模糊控制原理对PID控制器的参数进行在线调整,以满足系统控制过程中对于参...  相似文献   

8.
To improve the performance of permanent-magnet synchronous motor (PMSM) drives, a sensorless control scheme based on a sliding mode observer (SMO) with a fuzzy logic controller (FLC) and a dual second-order generalized integrator-frequency locked loop (DSOGI-FLL) is proposed in this paper. The major drawbacks of the conventional SMO, namely chattering phenomena, high-order harmonics and external noise, are discussed. These drawbacks affect the estimated accuracy of the SMO and reduce the control reliability of the system. To eliminate these drawbacks, an FLC is designed and integrated into the SMO to adjust the observer gain in a self-adaptive manner and to reduce the chattering; an existing dual synchronous frequency extract filter-phase locked loop (DSFF-PLL) is used to filter out the main components of high-order harmonics and to calculate the rotor position and speed precisely. Furthermore, to obtain an accurate fundamental frequency for the phase locked loop (PLL) and filter out the remaining harmonics and external noise signals, DSOGI-FLL processing is developed and incorporated into the DSFF-PLL. An overall PMSM sensorless control system based on the proposed SMO is designed, and an experimental platform using the TMS320F28335 DSP controller is built. Comparative experiments using the proposed SMO and the conventional SMO are performed to validate the effectiveness of the proposed FLC and the DSFF-DSOGI-FLL-PLL structures. Performance experiments of the overall proposed SMO-based sensorless control scheme are performed to verify the robustness and control reliability of the system. The results show that the proposed SMO has satisfactory performances and can be used in practical engineering.  相似文献   

9.
基于模糊自整定PI与重复控制的气动伺服系统研究   总被引:1,自引:0,他引:1  
针对气动位置伺服控制中的低精度、低刚度等问题,提出了一种重复补偿与模糊自整定PI相结合的复合控制方案。利用模糊控制器提高系统的动态性能和鲁棒性,通过重复控制器周期性地修正输出电压,以改善系统的稳态特性,实现优势互补,使系统获得良好的稳、动态性能。通过仿真试验表明,该控制算法容易实现,且能更好地提高气动伺服定位系统的跟踪精度,具有较强的实用性。  相似文献   

10.
A Self-Organising Fuzzy Logic Controller for a Coordinate Machine   总被引:1,自引:0,他引:1  
For a 3D coordinate measurement system, the dynamic accuracy of the moving table will influence the measuring accuracy directly. If a classical PID controller were designed for this measuring table without an accurate mathematical model, the gain parameters may need to be regulated frequently by trial-and-error to obtain the precise motion control objective, good adaptability, and robustness. In this paper, a model-free fuzzy controller and a self-organising fuzzy controller (SOFC) were employed to eliminate the above controller design problems and improve the tracking control accuracy. The control performances of these intelligent control strategies were compared, based on the experimental results. The SOFC has the best tracking accuracy and its learning ability significantly reduces the trial-and-error design effort of a traditional fuzzy controller.  相似文献   

11.
在分析永磁同步电动机(PMSM)数学模型的基础上,提出了一种模糊单神经元复合控制的方法,它兼有模糊控制和单神经元控制的优点,对被控对象的数学模型要求不高,能够克服传统控制方法中由于电机参数时变和负载扰动而带来的系统性能变差,具有较好的鲁棒性和实时性.该算法已应用于永磁同步电动机双闭环矢量控制系统中的转速控制器中.仿真结果表明,采用该方法的系统具有良好的静态和动态性能.  相似文献   

12.
本文提出了一种规则自校正模糊控制器,该控制器通过对模糊规则进行行修改,使系统具有学习功能从而改善控制器的性能。仿真结果表明,该控制器具有很好的动态特性和鲁棒性。  相似文献   

13.
Load–frequency control is one of the most important issues in power system operation. In this paper, a Fractional Order PID (FOPID) controller based on Gases Brownian Motion Optimization (GBMO) is used in order to mitigate frequency and exchanged power deviation in two-area power system with considering governor saturation limit. In a FOPID controller derivative and integrator parts have non-integer orders which should be determined by designer. FOPID controller has more flexibility than PID controller. The GBMO algorithm is a recently introduced search method that has suitable accuracy and convergence rate. Thus, this paper uses the advantages of FOPID controller as well as GBMO algorithm to solve load–frequency control. However, computational load will higher than conventional controllers due to more complexity of design procedure. Also, a GBMO based fuzzy controller is designed and analyzed in detail. The performance of the proposed controller in time domain and its robustness are verified according to comparison with other controllers like GBMO based fuzzy controller and PI controller that used for load–frequency control system in confronting with model parameters variations.  相似文献   

14.
混合输入机构运行过程中,由于负载、惯性力等变化,引起常速电机速度的波动,会影响输出运动的精度。针对混合输入机构中常速电机可测不可控的特点,实时检测常速电机的角位置,并对系统的动力学模型进行简化。提出了基于常速电机位置跟踪的控制策略对伺服电机进行控制,并给出了控制框图。考虑系统参数的不确定和外部扰动,设计了模糊滑模变结构控制器实现混合输入机构的轨迹跟踪,应用模糊推理确定切换控制的幅值和采用软切换连续控制的方法减小抖振。仿真结果表明本文方法正确有效。  相似文献   

15.
针对羰基合成反应装置中温度控制的特点,设计了温控器的硬件和软件部分;研究了与之相适应的控制算法,提出将模糊控制、PID控制及纯滞后控制算法有机地结合起来,使温控器在具有PID控制器动态跟踪品质和稳态精度的基础上,进一步实现控制的自适应性,发挥模糊控制鲁棒性强、动态响应好、上升时间快、超调小的特点.将研究的温控器应用于羰基合成反应过程的温控系统,取得了较好的控制效果.  相似文献   

16.
Air motors are widely used in the automation industry due to special requirements, such as spark-prohibited environments, the mining industry, chemical manufacturing plants, and so on. The purpose of this paper is to analyze the behavior of a vane-type air motor and to design a model reference adaptive control (MRAC) with a fuzzy friction compensation controller. It has been noted that the rotational speed of the air motor is closely related to the compressed air’s pressure and flow rate, and due to the compressibility of air and the friction in the mechanism, the overall system is actually nonlinear with dead-zone behavior. The performance of the previous controllers implemented on an air motor system demonstrated a large overshoot, slow response and significant fluctuation errors around the setting points. It is important to eliminate the dead-zone to improve the control performance. By considering the effects of the dead-zone behavior, we have developed an MRAC with fuzzy friction compensation controller to overcome the effect of the dead-zone. The following experimental results are given to validate the proposed speed control strategy.  相似文献   

17.
A rotary single inverted pendulum (RSIP) typically represents a space booster rocket, Segway and similar systems with unstable equilibrium. This paper proposes a novel two degree of freedom (2-DOF) fractional control strategy based on 2-loop topology for RSIP system which can be extended to control the systems with unstable equilibrium. It comprises feedback and feed-forward paths. Primary controller relates the perturbation attenuation while the secondary controller is accountable for set point tracking. To tune the parameters of proposed fractional controller a simple graphical tuning method based on frequency response is used. The study will serve the outstanding experimental results for both, stabilization and trajectory tracking tasks. The study will also serve to present a comparison of the performance of the proposed controller with the 1-DOF FOPID controller and sliding mode controller (SMC) for the RSIP system. Further to confirm the usability of the proposed controller and to avoid the random perturbations sensitivity, robustness, and stability analysis through fractional root-locus and Bode-plot is investigated.  相似文献   

18.
一种智能型焊缝跟踪系统的研制   总被引:4,自引:0,他引:4  
论述一种智能型焊缝跟踪系统,采用直接拍摄电弧式视觉传感器检测焊缝跟踪偏差,并通过一个自调整模糊控制器实现偏差的调节。整个跟踪过程可通过屏幕实时观察,所有的参数设置都通过人机对话实现。此外,还提出了一种新的焊缝图像处理方法来实时检测焊缝。试验表明,该系统能够对GTAW对接焊缝实现精确的跟踪。  相似文献   

19.
In this paper, a novel Runge–Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence.  相似文献   

20.
永磁同步电机的模糊滑模控制   总被引:1,自引:0,他引:1  
为了实现高性能永磁同步电动机伺服系统快速而精确的位置跟踪控制,在滑模控制策略中引入模糊控制算法,设计了基于模糊规则的滑模控制器;并通过理论分析和控制仿真,证实了模糊滑模控制很好地解决了抖振问题,对参数变化和负载扰动具有很好的鲁棒性,永磁同步电机可获得很好的位置跟踪效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号