首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

Sandia National Laboratories recently completed a cask drop test programme. The aims of the programme were (1) to demonstrate the applicability of a fracture mechanics-based methodology for ensuring cask integrity, and (2) to assess the viability of using a ferritic material for cask containment. The programme consisted of four phases: (i) materials characterisation; (ii) non-destructive examination of the cask; (iii) finite element analyses of the drop events; and (iv) a series of drop tests of a ductile iron cask. The first three phases of the programme provided information for fracture mechanics analyses and predictions for the drop test phase. The drop tests were nominally based upon the lAEA 9 m drop height hypothetical accident scenario, although one drop test was from 18 m. All tests were performed in the side drop orientation at a temperature of ?29°C. A circumferential, mid-axis flaw was introduced into the cask body for each drop test. Flaw depths ranged from 19 to 76 mm. Steel saddles were welded to the side wall of the cask to enhance the stresses imposed upon the cask in the region of the introduced flaw. The programme demonstrated the applicability of a fracture mechanics methodology for predicting the conditions under which brittle fracture may occur and thereby the utility of fracture mechanics design for ensuring cask structural integrity by ensuring an appropriate margin of safety. Positive assessments of ductile iron for cask containment and the quality of the casting process for producing ductile iron casks were made. The results of this programme have provided data to support IAEA efforts to develop brittle fracture acceptance criteria for cask containment.  相似文献   

2.
Abstract

BAM, as a competent German government institute for the mechanical and thermal testing of radioactive material transport and storage containers, operates unique drop and fire test facilities for experimental investigations on the open air BAM Test Site Technical Safety. To be able to perform even drop tests with full scale spent fuel or HAW casks (i.e. the German CASTOR cask designs), BAM constructed in 2004 a large drop test facility capable to handle 200 ton test objects, and to drop them onto a steel plate covered unyielding target with a mass of nearly 2600 ton. Drop test campaigns of the 181 ton GNS CONSTOR V/TC, the 129 ton MHI MSF-69BG and a 1∶2 scale model of the GNS CASTOR HAW28M (CASTOR HAW/TB2) have been performed since then. The experimental BAM drop testing activities can be supported also by drop testing of smaller packages (up to 2 ton) in an in-house test facility and by dynamic, guided impact testing of package components and material specimen inside a new drop test machine. In May 2008, a new modern fire test facility was put into operation. The facility provides two test stands fired with liquid propane. Testing in every case has to be completed by computational investigations, where BAM operates appropriate finite element modelling on appropriate computer codes, e.g. ABAQUS, LS-DYNA, ANSYS and other analytical tools.  相似文献   

3.
Abstract

The results are presented of 9 m (30 ft) drop simulations of three different types of transport casks, a monolithic ductile iron (DI) cask, a monolithic stainless steel (SS) cask, and a lead-shielded stainless steel (SS/Pb) sandwich cask. Each simulation involves two casks, one lying horizontally on an unyielding surface and the other positioned 9 m (30 ft) above the top surface of the lower cask. The top cask then free falls onto the lower cask, resulting in a more severe impact than the standard drop test required by the Nuclear Regulatory Commission (NRC). The drop tests were simulated using DYNA3D, a non-linear, explicit, three-dimensional finite element code for solid and structural mechanics. The results show that the monolithic casks are much stiffer than the stainless steel/lead sandwich cask. The largest difference was observed between the DI cask and the SS/Pb sandwich cask. Although the SS/Pb cask experiences considerable plastic deformation, none of them experiences failure by rupture, and they all perform within the requirements of Regulatory Guide 7.6, Revision 1 and IOCFR71. The better to compare the results, stress- and strain-based factors of safety were calculated for all of the simulations. These calculations show that the DI cask has a larger margin of safety than the SS/Pb sandwich cask, while the monolithic SS cask has a larger margin of safety than the monolithic DI cask. Finally, to address the concern over the brittleness of the DI casks, critical flaw sizes were calculated. All flaws required for crack propagation were larger than those detectable by current inspection techniques. Overall, the results of this study indicate that DI has sufficient strength, ductility, and fracture toughness to be considered as a structural material for transport casks.  相似文献   

4.
Abstract

Within the decommissioning programmes of the Italian nuclear power plants, the Italian multi-utility company ENEL decided to rely on on-site dry storage while waiting for the availability of the national interim storage site. SOGIN (Società Gestione Impianti Nucleari SpA, Rome, Italy), now in charge of all nuclear power plant (NPP) decommissioning activities was created in the ENEL group but is now owned by the Italian government. In 2000 it ordered 30 CASTOR® casks for the storage of its spent fuel not covered by existing or future reprocessing contracts. Ten CASTOR X/A17 casks will contain the Trino pressurised water reactor (PWR) fuel and the Garigliano boiling water reactor (BWR) fuel currently stored in pools at the nuclear power plant Trino and the Avogadro nuclear facility at Saluggia. Additionally 20 CASTOR X/B52 casks will contain the BWR fuel assemblies, which are stored in the pool at the Caorso nuclear power plant. GNB (Gesellschaft fuer Nuklear-Behaelter mbH, Essen, Germany) has completed detailed studies for the design of both types of cask. The tailored cask design is based on the well-established and proven design features of CASTOR reference casks and is responsive to the needs and requirements of the Italian fuel and handling conditions. The design of the CASTOR X/A17 for up to 17 Trino PWR fuel assemblies or 17 Garigliano BWR fuel assemblies and the CASTOR X/B52 cask holding up to 52 Caorso BWR fuel assemblies is suitable for the following conditions of use: loading of the casks in the fuel pools of the nuclear installations at Trino, Caorso and Avogadro; no upgrading of the Current on-site crane capacities; transport of the fuel assemblies, which are currently stored at the Saluggia facility to the nuclear power plant Trino; on-site storage in a vertical or horizontal position with the possibility of transfer to another temporary storage or a final repository, even after a number of years; the partial loading of mixed oxide (MOX) and failed fuel; loading and drying of bottled Garigliano fuel assemblies. On the basis of the CASTOR V/19 and CASTOR V/52 cask lines, the design of the CASTOR X/A17 and X/B52 casks aims at optimising safety and economics under the given boundary conditions. The long time for which fuel is kept in intermediate wet storage results in a reduced shielding and thermal-conduction requirement. This is used to meet the tight mass and geometry restrictions while allowing for the largest cask capacity possible.  相似文献   

5.
Abstract

The design assessment concerning the mechanical behaviour of transport and storage casks for radioactive material to fulfil nuclear safety criteria has to be based on two essential considerations: (1) Effective analysis of the stress–strain state of the cask components under both normal operational and test conditions including hypothetical accident scenarios with suitable accepted methods. (2) Economic estimation of the required properties and the structural state of the cask components with sufficient exactness. In an overview of the codes which are available at GNS/GNB for cask impact strength analyses (ANSYS, ADINA, VDI Codes), procedures and aspects of benchmarking and validation of calculation codes are described. The results of experimental full size cask drop test programs (CASTOR, POLLUX) and corresponding pre-test calculational analyses show the suitability of the codes used. The influence of dynamic effects on the mechanical properties of material (ductile cast iron, wood) has been investigated experimentally. By consideration of these dynamic values in strength analyses of casks at impact a good agreement between experimental and calculational results has been achieved.  相似文献   

6.
An impact test program was conducted to determine the energy absorption characteristics of typical heat transfer or structural fins on shipping casks as these fins undergo dynamic, gross plastic deformation. It was assumed that the energy absorption characteristics of fins welded parallel to the longitudinal axis of a cylindrical cask are linear with respect to their length, and the test program was designed to determine the energy absorption capability per inch of fin length along the cask body. Specimens of typical fin geometries were impacted with free-falling weight dropped from known heights, and the force-time relationships occurring during each impact were recorded. A computer program was used to convert the test data into deformation-time and energy-time relationships. These relationships were correlated in a set of curves that enable the cask designer or analyst to compute the energy absorption capacity of a longitudinal fin on a cask as a function of its geometry and the percentage of deformation it is expected to experience as well as the peak force the fin would experience during the impact resulting from a 30-ft free drop into an essentially unyielding horizontal surface.  相似文献   

7.
Abstract

Cask impacts without impact limiters onto unyielding targets result in totally different mechanical reactions from those of relatively smooth impacts using impact limiters. During the licensing procedure of the new GNS CASTOR HAW 28M design for vitrified high activity waste, BAM therefore decided to perform an additional drop test with a 1 : 2 scale test cask (CASTOR HAW/TB2). In spite of a small drop height of only 0˙3 m onto the unyielding target of the BAM drop test facility, which conservatively covers any storage building foundation, the impact caused considerable stresses to the cask structure with high stress and strain rates. This paper presents the evaluation strategy of BAM including the drop test results and the development and qualification of appropriate finite element modelling to achieve sufficient agreement between test and calculation results. Further steps include mechanical analyses of reduced and full scale cask designs to determine the most critically stressed areas of the structure, verify scaling factors and demonstrate safety with respect to cask integrity and tightness.  相似文献   

8.
Abstract

In transport casks for radioactive materials, significantly large axial and radial gaps between cask and internal content are often present because of certain specific geometrical dimensions of the content (e.g. spent fuel elements) or thermal reasons. The possibility of inner relative movement between content and cask will increase if the content is not fixed. During drop testing, these movements can lead to internal cask content collisions, causing significantly high loads on the cask components and the content itself. Especially in vertical drop test orientations onto a lid side of the cask, an internal collision induced by a delayed impact of the content onto the inner side of the lid can cause high stress peaks in the lid and the lid bolts with the risk of component failure as well as impairment of the leak tightness of the closure system. This paper reflects causes and effects of the phenomenon of internal impact on the basis of experimental results obtained from instrumented drop tests with transport casks and on the basis of analytical approaches. Furthermore, the paper concludes the importance of consideration of possible cask content collisions in the safety analysis of transport casks for radioactive materials under accident conditions of transport.  相似文献   

9.
Abstract

As a cask material, ductile cast iron may be susceptible to failure in a brittle manner under certain temperature and load conditions. A design criterion for ductile cast iron casks against brittle failure due to drop tests, has been proposed by Central Research Institute of Electric Power Industries. This design criterion includes a safety factor which presents the extent between the detectable flaw size and the critical flaw size and may be interpreted as ‘uncertainty factor’ as to the uncertainties regarding stress prediction, fracture toughness and so on. In this report, to verify the proposed design criterion, probabilistic evaluation was performed according to a series of drop tests using a full scale cask and material tests, and it is confirmed that the proposed design criterion is applicable and reliable. Furthermore, applicability of the safety design method described in the IAEA-TECDOC-717 published in August 1993 was investigated.  相似文献   

10.
Interim storage in transport and storage casks of the CASTOR type, and later the final storage of these casks are planned for the management of spent fuel assemblies from German research reactors.A mobile transfer unit is used for loading the casks with fuel assemblies on the reactor sites. Key components of the mobile transfer unit are a transfer cask, the recharging lock, and an air-cushion transport system. By means of the air-cushion transport system, the whole equipment, as well as the CASTOR casks, is transported into the reactor building. Thus, handling of the 16 t CASTOR casks is possible even on reactor sites within sufficient crane capacity. A 20 ft container accommodates the mobile transfer unit and all accessories so that the whole equipment can be transported to the reactor sites by truck.  相似文献   

11.
Abstract

The present paper gives an overview of Japanese experimental studies of dual-purpose metal casks. The studies included: cask drop without impact limiters, drop of a heavy weight onto a cask due to building collapse, burial of a cask in debris from building collapse, tipping over of a cask during an earthquake, long-term containment of metal gaskets and transportability of casks after long-term storage. Most of the studies employed full-scale casks for the experiments.  相似文献   

12.
Domestic and international regulations for the transportation of radioactive materials strictly prescribe the design requirements for spent nuclear fuel (SNF) transport casks. According to the applicable codes, a transport cask must withstand a free-drop impact of 9 m onto an unyielding surface and a free-drop impact of 1 m onto a mild steel bar. However, the structural performance of a transport cask is not easy to evaluate precisely because the dynamic impact characteristics of the cask, which includes impact limiters to absorb the impact energy, are so complex.  相似文献   

13.
14.
Abstract

The Nuclear Regulatory Commission (NRC) has recently completed an updated Spent Fuel Transportation Risk Assessment, NUREG-2125. This assessment considered the response of three certified casks to a range of impact accidents in order to determine whether or not they would lose their ability to contain the spent fuel or maintain effective shielding. The casks consisted of a lead shielded rail cask that can be transported either with or without an inner welded canister, an all-steel rail cask that is transported with an inner welded canister, and a DU shielded truck cask that is transported with directly loaded fuel. Finite element analyses were performed for impacts at speeds of 48, 97, 145 and 193 kilometres per hour into a rigid target. Impacts in end-on, side-on, and CG-over-corner orientations were analysed for each cask and impact speed. Calculations were performed to equate these impacts onto rigid targets with higher speed impacts onto the yielding targets that exist in the real world. These analyses indicated that a cask with an inner welded canister or a truck cask would not release radioactive material in any impact accident and that only very high-speed impacts onto hard rock targets could result in either release of material or significant degradation of shielding for rail casks without an inner canister. Impacts other than those onto flat unyielding targets were also considered. Analyses show that an impact that bypasses the impact limiters on the ends of the casks does not result in seal failure and neither does an impact by a locomotive also between the impact limiters.  相似文献   

15.
In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised ‘Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks’ by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges.  相似文献   

16.
Abstract

An important problem of the handling of casks intended for spent nuclear fuel transport and storage is providing safety during all operations. In particular the safety requirements should be fulfilled during the cask cooling that precedes the discharge of spent nuclear fuel from the cask. An analysis has been performed for the CASTOR RBMK cask heat removal system. This provides forced cooling of the cask with the spent fuel assemblies in it, by water delivery into the cask inner cavity. As a result of analyses performed for the different flow rates of the cooling water, the maximum pressure in the cask cavity caused by water evaporation has been estimated and compared with the maximum permissible value and the time taken by the cask in cooling to the given temperature limit has been determined. On the basis of the analysis results the most preferable regime for CASTOR RBMK cask cooling is suggested.  相似文献   

17.
Abstract

The first successful worldwide free fall drop test with a 40 ft ISO freight container took place in Bremen (Germany) at the dry dock of the former Vulkan shipyard on 25 September 1998. This drop test had to be performed to qualify the ISO Boxcontainer as a Type IP-2, IP-3 package in accordance with the new IAEA Safety Standards Series No ST-1 (1996 Edition). Dynamic impact requirements will become mandatory for freight containers to be qualified as Type IP-2,3 packages in compliance with IAEA ST-1 paragraph §627 ‘Alternative Requirements for IP-2,3 Packages’ (comes into force in January 2001). STM has fulfilled the dynamic impact requirements in performing a full scale drop test. The 40 ft ISO freight container prototype (L × W × H = 12192mm × 2438 mm × 2491 mm) was fully loaded with 28 t of steel plates together with shock absorbing material to simulate the load and load securing system. The total drop test weight was 35.6 t. In accordance with the new IAEA Safety Standards Series No ST-1 requirements, the so-called LONGFORCE® container was dropped onto an unyielding foundation in a position which produced the maximum damage in respect of the package safety features. The package was dropped on its comer, door side down on the roof, with the centre of gravity over the impact area (slap-down drop). The container was lifted 12.6 m high (highest point) and 0.3 m (lowest point) under a drop angle of 70°. The combined mass of the concrete block and the steel plate was more than 100 times that of the container test specimen. The first impact resulted in an acceleration of about loog where the maximum was just before the impact. The second impact, however, turned out to be decisive showing maximum acceleration readings in the range of 250g. The container has been inspected after the drop test and deformations of the container rear comer castings (area of second impact) and a small weld crack in one of the comer casting welds was found. On the container floor one third of transverse profiles showed S-form distortion. The LONGFORCE container was leak tested prior to and after the drop test in compliance with the STM leak test procedure. The leak tests consisted of filling the container with pressurised air up to 5 kPa and recording a possible pressure drop over a determined test period. The container was considered leak tight prior to and after the drop test based on the permissible limits set in the leak lest procedure. The free fall drop test is considered a full success qualifying the 40 ft LONGFORCE container as Type IP-2, Ip-3 package in compliance with the new IAEA Safety Standards Series No ST-1 requirements.  相似文献   

18.
Abstract

The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditionslike drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to thecollapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and — with respect to leak-tightness — relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected.  相似文献   

19.
Abstract

An improved BAM safety assessment concept for the cask material ductile cast iron (DCI) to cover higher stresses in the cask body, highly dynamic load scenarios, and a broader range of material qualities will require more extensive fracture mechanics analyses based on a combination of material testing, calculation of applied stresses, and inspection standards. As an example, the brittle fracture mechanics assessment of a surface crack in a plate due to the dynamic load from the 5 m drop of a cubic container (not equipped with impact limiters) onto a reinforced concrete target is investigated. The numerically calculated time-dependent stress intensity factor is compared with a previous static solution with the same loading history inserted. For the scenario studied the differences between the curves are negligible because a dynamic load of the cask within a time scale of millisec9nds can be considered as a quasi static load for the crack.  相似文献   

20.
In this paper, benchmark calculations are carried out using the FEM code ADINA. Three drop tests with a DCI cask carried out in Japan are investigated. The drop orientations comprise the 9 m drop with impact flat onto the cylindrical shell of the shock absorbers at the top and bottom part as well as the 1 m drop with impact of the bar in the center of the cylinder wall. Calculated results are compared to the experimental ones. It is found that the calculations meet the measurements conservatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号