共查询到18条相似文献,搜索用时 46 毫秒
1.
针对传统高斯混合模型应用于彩色图像分割时计算复杂度高等问题, 提出一种多阶抽样的高斯混合模型的彩色图像分割算法。首先,给出采样数定理及其证明,并推导出与聚类类别数和最小聚类相关的最小采样数目;其次,设计一罚函数判断抽样优劣,消除抽样对聚类模型影响,根据最小采样数数目,对像素点进行均匀采样,并利用高斯混合模型对采样像素点进行聚类;最后,定义像素点和类之间的距离,对剩余的像素点按距离最近原则进行划分。实验结果表明算法具有有效性。 相似文献
2.
3.
为了解决烟雾分割算法中灰白(白)烟和黑色烟雾的同时提取以及分割阈值的自适应选取问题,利用烟雾属于前景目标的特征以及灰白(白)烟和黑色烟雾的颜色特征,提出一种改进混合高斯模型的自适应烟雾图像分割算法.该算法在混合高斯背景模型的基础上删除长期没有匹配的 相似文献
4.
《计算机应用与软件》2014,(6)
针对视频监控系统中分离出合适的运动目标是进行目标识别的关键步骤,并且需要在分离目标时对光线的连续变化有相应的自适应能力并保持检测目标的准确性。为适应应用环境对背景构建和前景的获取与释放控制,对所使用的自适应混合高斯背景模型进行了相应的优化。背景构建和前景控制算法为:构建一个静态背景图像,然后让一个包含场景中移动对象和静态背景图像的视频序列对背景模型进行初始化。对前景消融时间的调整引入前景消融时间控制机制和独立的模型学习效率。通过多次的实验证实了该算法有很好的鲁棒性和准确性。 相似文献
5.
6.
高斯混合模型是一种简单有效且被广泛使用的图像分割工具。然而,传统的高斯混合模型在混合成分个数确定时的拟合结果不够精确;此外,由于没有考虑像素间的空间关系,导致分割结果易受噪声干扰,且分割精度不高。为弥补传统高斯混合模型的缺陷,文中提出多分类高斯混合模型和基于邻域信息的高斯混合模型用于图像分割。多分类高斯混合模型对传统混合模型进行二重分解:传统混合模型由M个分布加权混合得到,多分类混合模型进一步将M个分布中的每一个分布分解成R个分布。即多分类高斯混合模型由M个高斯分布混合组成,而这M个分布分别由R个不同的分布混合得到,提高了模型的拟合精度。基于邻域信息的高斯混合模型通过对模型中的先验概率和后验概率添加空间信息约束,增强了像素间的信息关联和抗噪性。采用结构相似性、误分率和峰值信噪比等指标来评价分割结果。通过实验发现:与现有的混合模型分割方法相比,文中方法大幅提高了分割精度,且有效地抑制了噪声干扰。 相似文献
7.
纹理图像分割是图像处理的一个基本问题。由于基于高斯混合模型的纹理图像分割方法.大多采用单像素的方法,因此分割精度和效率都较低。为了更好地进行纹理图像分割,在子空间思想的基础上,提出了一个基于图像块的分割算法及其改进算法,即先取图像块的均值、标准差、最大值、最小值以及中间像素的像素值等5个特征作为纹理特征,再利用高斯混合模型进行纹理图像分割,实验结果表明,该新算法的分割精度和分割效率较原分割算法都有较大提高。 相似文献
8.
摄像机的故意干扰检测技术是数字视频监控系统中一个重要组成部分.根据摄像机移动前后拍摄背景不同的特点,对基于混合高斯分布模型的背景消除方法进行了改进.包括:背景模型匹配只使用亮度信息,将高斯分布模型按权值、方差排序,动态调整采样频度,等等.实验表明,该算法分割效果较佳,检测的实时性大大增强. 相似文献
9.
基于高斯混合模型的海面运动目标检测 总被引:5,自引:1,他引:5
提出了一种基于变化检测的高斯混合模型参数估计方法,建立了象素点背景模型并用于海面运动目标的检测。在实验部分,将该方法估计的高斯混合背景模型的参数与基于迭代的EM算法估计的模型参数做比较,模拟实验的结果表明两者估计的参数值相差不大,而在对视频流中的象素点灰度值分布的逼近中,该文的方法比EM算法更接近真实的分布,并且在一定程度上减少了建立背景模型的所需的内存和计算时间。运动目标检测的结果表明,使用该方法建立的背景模型可以比较准确地检测到海面上的运动船只。 相似文献
10.
有限高斯混合模型是广泛应用于聚类分析与分布估计的概率模型之一,同样在脑部MR图像分割领域获得了广泛应用.利用高斯混合模型可以描述大脑图像,通过期望最大算法求解随机变量的特征值,并用其对图像上的点进行分类,可以在一定程度上解决脑图像分割问题.针对含脉冲噪声的大脑图像,首先利用改进的滤波方法对图像进行滤波,再利用粒子群改进算法的全局优化特性求解高斯混合模型的参数,这样避免了EM算法易陷入局部极值的现象,以提高参数精度,从而进一步提高分割质量. 相似文献
11.
《计算机应用与软件》2014,(1)
道路视频监控中经常存在车辆缓慢运动或短暂停留的情况。针对传统混合高斯模型背景减除法对环境突变敏感和对缓慢运动目标丢失信息的问题,提出一种改进的自适应车辆检测方法。首先,在参数更新前对像素值分类并根据分类结果设置模型更新率,抑制缓慢运动前景被训练成背景;引入一个跟踪环境变化的度量因子,当环境突变时实现背景减除和帧差法的自适应切换,滤除环境变化的干扰;最后通过生态学滤波得到准确的运动目标。实验表明,该算法对白天实时路况视频中的运动车辆具有较好的检测效果。 相似文献
12.
混合高斯模型已经广泛应用于背景建模中,但是结果受到噪音的干扰和光照突变的影响。为了解决这个问题,将Stauffer的混合高斯模型进行改进,当帧间差分判断出场景变化时,每个像素点的学习率会随着变化。由于边缘图像受到噪音干扰小,将这种改进的混合高斯模型也应用在边缘图像中,来提取边缘前景。边缘前景膨胀后,通过原图像的前景和边缘前景的与运算,得到最后的结果。实验结果表明,可以很好地去除噪音和解决光照突变的影响,提高了目标检测的效果,比传统方法更加有效。 相似文献
13.
基于深度图像的室内场景理解是计算机视觉领域中的前沿问题。针对三维室内场景中平面较多的特性,提出一种基于高斯混合模型聚类的深度数据分割方法,实现对场景数据的平面提取。首先将Kinect获取的深度图像数据转换为离散三维数据点云,并对点云数据作去噪和采样处理;在此基础上计算所有点的法向量,利用高斯混合模型对整个三维点云的法向集合聚类,然后利用随机抽样一致性算法对各个聚类进行平面拟合,由每个聚类得到若干平面,最终把整个点云数据分割为一些平面的集合。实验结果表明,该方法得到的分割区域边界准确,分割质量较高。提取出的平面集合为以后的室内对象识别和场景理解工作奠定了较好的基础。 相似文献
14.
《计算机应用与软件》2017,(4)
针对传统混合高斯模型(GMM)前景目标检测运算量过大问题,提出一种基于改进混合高斯模型的前景检测算法(TGM)。通过基于历史信息的模型清理机制,减少背景稳定区域像素点的高斯分布数量,进而降低算法运算量;建立临时高斯分布,运用更简单的加减运算进一步减少运算量,最后将符合条件的临时高斯分布转化为正式高斯分布,避免模型无意义的频繁更新,提高了准确性。实验结果表明,改进后的算法与原算法相比,具有更好的实时性和很好的准确性。 相似文献
15.
针对基于Mean-Shift目标跟踪算法中遇到的不能对模板进行实时更新的问题,提出一个基于混合高斯背景建模的目标模板更新算法.该算法将目标视为背景,对目标中的每一个像素点利用三个高斯函数对它进行建模,利用每次Mean-Shift跟踪到的目标区域来对先前建立的混合高斯模型进行实时更新,将混合高斯模型得到的目标模板作为下一帧跟踪的目标模板.该算法较好地解决了基于Mean-Shift算法的模板更新问题,实验证明该算法是有效的. 相似文献
16.
《计算机应用与软件》2017,(6)
针对摄像机俯视拍摄场景的人数统计问题,提出一种运算效率高、误检率低的人数统计方法。以人头部位为检测对象,采用运动侦测、边缘检测方法获取人头轮廓,在此基础上采用高斯混合模型分别对人头轮廓目标点集和椭圆模型进行建模,通过最小化人头轮廓目标点集与椭圆模型的高斯混合模型之间的欧氏距离求解椭圆参数,统计满足椭圆形状的轮廓数量,再通过形状滤波得到人数统计结果。人数统计对比实验结果表明,新方法的误检率低,且运算效率高。 相似文献
17.
《计算机应用与软件》2016,(11)
在复杂场景下的运动前景提取是智能视频监控的基础部分。高斯混合模型是常用的背景建模方法,针对高斯混合模型中模型个数固化导致的无谓的系统开销,提出基于单高斯模型成长的动态个数调整形成的高斯混合模型。对模型的更新率根据场景变化的剧烈程度进行实时改变,能较好适应突发场景、光照的变化。对提取的运动前景进行形态学处理,得到最后的提取目标。实验结果表明,该方法背景建模适应性强,提取前景精度有所提升。 相似文献
18.
陈超 《计算机应用与软件》2019,36(6)
传统AdaBoost存在一定的局限,比如训练分类器时对训练样本自身所带的噪声过于敏感,产生的分类器泛化能力不强和导致分类器过拟化问题,在训练分类器时只能静态分配分类器权重而不能自适应地对每个训练样本动态调整权重等问题。提出一种基于SBoost算法和PBoost算法,引入样本权重调节器、非平衡的样本采样、误差纠偏方法来检测潜在的样本。模拟实验表明:改进后的技术有效的提高了分类器的精确度且防止过拟化问题。 相似文献