首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《粉末冶金学》2013,56(4):193-200
Abstract

The influence of admixed zinc stéarate on the shrinkage of uniaxially pressed iron powder compacts has been studied. For pressing conditions which caused inhibition of compaction the removal of the stéarate during sintering produced an increase in shrinkage parallel to the pressing axis and in direct proportion to lubricant content. Additions of stearic acid (varying particle size), zinc stearate, lithium stearate, stearamide, and Cosmic 64 wax were used to investigate the influence of lubricant on mechanical properties of green and sintered iron powder compacts. Green strength was reduced relative to unlubricated material only by lubricants whose physical and chemical properties enabled them to produce and maintain extensive interparticle films during pressing. Vapour from the rapid initial decomposition of lubricants which reduced green strength could have a deleterious physical influence on the tensile strength of dewaxed or sintered Fe compacts. Decomposing lubricants also produced undesirable chemical effects. These arose from reactions between lubricant decomposition products and the matrix or by these products interfering with reactions between matrix and sintering atmosphere.  相似文献   

2.
Powder metallurgy is an effective method to process the iron component in near net shape. In this paper, the influence of particle size, lubricant and compaction load on the physical and mechanical properties of the sintered iron–zinc stearate composite sample has been investigated. Atomized iron powders of particle size 100–200 and 200–300 mesh with zinc stearate 2.5, 5.0 and 7.5 wt% were used for preparing the samples. Green samples were prepared by cold compaction at various loads of 200, 180 and 160 KN and the sintering is done at 500 °C. The physical properties and the mechanical properties such as density, hardness and compression strength have been measured for the sintered samples. Scanning electron microscope was used to characterize the atomized iron powders and the sintered samples. It were confirmed that the shape of atomized iron powder particles were irregular, dendritic and acicular. Energy dispersive spectroscopy was used to identify the elemental compositions of powders and the sintered samples. Taguchi (L18) method was effectively used to develop the regression model and describe the contribution of the input parameters in compressive strength, density, and hardness. The highest effect on density was powder particle size followed by compaction load and lubricant wt%. The Hardness value increased with increase in the powder particle size and compaction load and decreases with increase in the lubricant wt%. The compression strength increased with increase of compaction load and decrease of lubricant wt% and particle size.  相似文献   

3.
Conclusions The optimum zinc stearate content, ensuring the greatest compressibility of a powder at a given pressing pressure, is determined mainly by the volume of interparticle pores. The higher the density of a compact and the smaller the size of its pores, the smaller is the amount of zinc stearate it can hold. The weakening action of zinc stearate, which manifests itself in stress relief at interparticle contacts during pressing, substantially increases the density of compacts and at the same time decreases their strength. This phenomenon is particularly pronounced with compacts from powders of poor compactibility. After pressing at any given pressure, the strength of a compact with zinc stearate will be higher than that of a compact without a lubricant when the decrease of the contact surface brought about by the elastic aftereffect in the stearate is counterbalanced by the increase of this surface resulting from better compressibility of the powder. The addition of an optimum amount of zinc stearate to an iron powder is always more effective than lubrication of the die walls. A new mechanism of densification of iron powder with zinc stearate is proposed, in which the key factor is an intensification of stress relief at interparticle contacts by the solid lubricant.Translated from Poroshkovaya Metallurgiya, No. 5(221), pp. 16–22, May, 1981.  相似文献   

4.
通过对铁粉的动态压制曲线的研究认为粉末的温压成形过程可大致分为三个阶段。在第一阶段粉末颗粒重排起主导作用, 对温压致密化起了重要作用。温压成形过程颗粒重排的贡献率明显大于冷(室温)压。常规温压的颗粒重排占总压制行程的44%, 比冷压的颗粒重排份额提高了15%。而有模壁润滑温压的颗粒重排占总压制行程的50%, 比冷压的颗粒重排份额提高了31%。  相似文献   

5.
Lefebvre L.-P.  Henuse Y.-M.     《粉末冶金学》2013,56(4):325-330
Abstract

In powder metallurgy, green strength has important consequences for part production rates and product end quality. Mechanical interlocking and interparticle cold welding are the main mechanisms responsible for green strength. These mechanisms are affected by compaction pressure, temperature, amount of lubricant and additives admixed to the powder, and surface characteristics of the powder. The present paper describes the effect of iron powder surface modification on the green strength of compacted specimens. The green properties of compacts fabricated from iron powder treated with diluted sulphuric acid and coated with copper by a non-catalytic displacement plating method are presented. The results indicate that surface modifications strongly influence the green strength of the compacts.  相似文献   

6.
《粉末冶金学》2013,56(33):21-32
Abstract

Glass-ceramic inserts have been made and shrink-fitted into steel bolsters to assess the feasibility of glass-ceramic as a die material for the die-compaction of lubricated and unlubricated iron powder. Measurements of compacting pressures and ejection stresses were lower for the glass-ceramic die compared with those for a standard tool-steel die in lubricated conditions, while in unlubricated conditions ejection stresses were appreciably higher, with scoring and brittle fracture of the insert. The results indicate that possibilities may lie in the further development of ceramics as inexpensive die materials for powder compaction in which die-wall friction could be significantly reduced.  相似文献   

7.
《粉末冶金学》2013,56(2):159-164
Abstract

The effects of warm compaction on the green density and sintering behaviour of aluminium alloys were investigated. Particular attention is paid to prealloyed powders, i.e. eutectic and hypereutectic Al-Si alloys, regarding their potential applications in the automotive industry. The effects of chemical composition, alloying method, compacting temperature and the amount of powder lubricant were studied. The compaction behaviour was examined by an instrumented die enabling simultaneous measurement of density, die wall friction coefficient, the triaxial stresses acting on the powder during the course of compaction and ejection pressure. The sintering behaviour was studied via dilatometeric analysis as well as normal batch sintering. The results show that warm compaction could be a promising way to increase the green density of aluminium alloys, especially prealloyed powders, and to decreased imensional instability during sintering. Moreover, it reduces the sliding friction coefficient and the ejection force during the powder shaping process. This paper presents the significant advantages and drawbacks of using the warm compaction process for commercial PM aluminium alloys.  相似文献   

8.
《粉末冶金学》2013,56(30):130-152
Abstract

Laboratory compaction and ejection studies have been made using a reduced iron powder mixed with a number of zinc stearates having median particle sizes between 4 and 22μm. Comparable experiments were carried out on a fully instrumented production press, which was operated at compacting pressures between 300 and 500 MN/m2 to produce compacts with true densities ranging from 5·90 to 6·70 g/cm3. Determination of ejection forces by the two methods enabled calculations of the coefficients of friction between compact and die wall to be made for mixtures containing 0·5–2·0 wt.% zinc stearate. These showed that the behaviour during compaction and ejection was comparable on both laboratory and production scales and gave very similar results. An interpretation of the results is given and values of coefficients of friction are presented which show that these are dependent on the type of zinc stearate used.  相似文献   

9.
通过扫描电子显微镜观察和性能测试研究了硬脂酸锌、乙烯基双硬脂酰胺(ethylene bis stearamide,EBS)、复合润滑剂以及压制温度对Fe基粉末冶金材料温压工艺的影响规律。结果表明:当润滑剂加入量(质量分数)超过0.4%后,Fe基粉末的流动性和松装密度均随润滑剂加入量的增加而降低,其中加入单一EBS润滑剂的影响更大。添加润滑剂后增加了Fe基粉末冶金生坯的致密度,其中添加硬脂酸锌和复合润滑剂的Fe基粉末冶金生坯断口颗粒间结合更为紧密。润滑剂对提高Fe基粉末冶金试样生坯密度、烧结密度及抗弯强度的作用顺序为复合润滑剂硬脂酸锌EBS,Fe基粉末冶金材料的密度和力学性能均随温压温度的升高而增加。在最佳润滑剂加入量0.4%时,120℃温压Fe基粉末冶金试样密度比室温压制Fe基粉末冶金试样的密度提高了0.14~0.21 g/cm~3,硬度和抗弯强度提高了40%~65%。  相似文献   

10.
ABSTRACT

The influence of green density between 6.5 and 7.3?g?cm?3 on the anisothermal and isothermal shrinkage of atomized plain iron was investigated by dilatometry. The geometrical activity deriving from the extension of the interparticle contact areas and the structural activity provided by the defectiveness of the interparticle contacts promote anisotropic anisothermal shrinkage starting from 500°C up to the bcc to fcc iron transformation. It displays a minimum at 6.9?g?cm?3, resulting from the combined effects of the thermodynamic driving force and of geometrical and structural activity. Anisothermal shrinkage is caused by an anisotropic increase in the internal radius of the neck. Anisotropic isothermal shrinkage is smaller than the anisothermal one and is almost independent on green density. No anisothermal shrinkage was observed on the tapped powder, demonstrating that anisothermal shrinkage in green specimens is due to geometrical and to structural activity introduced by prior cold compaction.  相似文献   

11.
《粉末冶金学》2013,56(3):224-228
Abstract

Friction at the interface between tools and powder plays a significant role in the cold die compaction process in both compression and ejection steps. In this work, the influence of tools materials and coatings as well as lubricant content in the powder is investigated with a sliding piece device. Three iron powders with different amounts of lubricant, from 0 wt-% to 0·6 wt-% (all percentages are expressed in weight), are tested on eleven parallelepipedic slabs (different couples of material and coating), which simulate tools surfaces. Results are presented in terms of friction coefficient evolution, friction coefficient values and surface analysis. Then they are compared with previous work to check their validity and consistency. Finally an assessment of the friction aptitudes of each slab will be made to open prospects of improving industrial processing conditions.  相似文献   

12.
《粉末冶金学》2013,56(27):1-21
Abstract

The effect of small additions of activating elements such as silicon on the consolidation behaviour of beryllium powder has been investigated. Evidence is given that compacts of activated powder have more uniform high density than those produced from non-activated material. Studies carried out on prepared beryllium discs show that silicon modifies the micro-structure of the surface layer of beryllium oxide and, in consequence, affects its sliding behaviour and bonding characteristics.

From these results a model is proposed to account for the observations made on both sintered and hot-pressed beryllium which leads to the conclusion that, in addition to interparticle bonding, some measure of metal particle rearrangement is necessary for maximum densification. Activating elements may, in modifying the surface characteristics of the individual powder particles, assist in achieving an improved balance between particle sliding on the one hand and interparticle bonding on the other. In taking into account the bulk consolidation characteristics as well as the micromechanics of the process, the model also explains the observed influence of particle-size distribution on porosity in the compact.

The extent to which friction and sliding can influence compaction has been demonstrated by using a system of coloured Plasticine balls to simulate individual powder particles. Analysis of the behaviour of the Plasticine compacts substantiates the proposed model of the hot pressing of beryllium powder.  相似文献   

13.
《粉末冶金学》2013,56(2):139-142
Abstract

The study of the influence of temperature on the performance of admixed lubricants is important since higher densities are desired while keeping the ejection force at a reasonable level. Therefore, three lubricants admixed with iron powder were evaluated during compaction at 25, 65, and 110°C. An instrumented die permitting the measurement of the applied and transmitted pressures through the compact lead to the evaluation of the slide coefficient. This empirical parameter is related to the stress ratio and to the friction coefficient characterising the friction of the compact on the die wall. The evolution of the slide coefficient revealed a different behaviour at the beginning of compaction, where a higher shear resistance is desirable, compared with the end of compaction, which was more influenced by the amount of lubricant at the interface between the compact and the die wall. A too low shear resistance at that stage could however lead to stick–slip phenomenon.  相似文献   

14.
几种润滑剂对温压工艺的影响   总被引:2,自引:0,他引:2  
温压工艺的技术关键之一是润滑剂 ,其主要作用是减小压制过程中粉末颗粒与模壁之间及粉末颗粒之间的摩擦 ,增大有效压力 ,从而使压坯密度相对于传统压制工艺明显提高。不同润滑剂的润滑效果不同 ,最佳压制温度也有差异。本文选用 3种不同的润滑剂 ,在不同温度、压力条件下采用温压技术制备铁基粉末冶金材料 ,研究了压坯密度的变化规律和它的力学性能 ,探讨了润滑剂对温压工艺的影响  相似文献   

15.
none 《粉末冶金学》2013,56(1):49-54
Abstract

In order to investigate the friction behaviour of powder during compaction, a new method has been developed. Compaction is a complicated process and direct and continuous measurement of the coefficient of friction is not easy, because the coefficient of friction varies due to changes in such process parameters as pressure distributions, powder surface deformation etc. In this paper, a new device for measuring the coefficient of friction between metal powder particles in contact with the die wall during compaction is presented. Using the conventional methods for direct measurement of the radial pressure during compaction is very difficult. The new device offers the possibility of investigating the normal pressure on the powder particles directly and continuously by keeping the green density constant. The measurements are performed using strain gauges mounted on the upper punch. The upper punch surface in the new device corresponds to the die wall in a conventional press. The sliding velocity, compaction velocity, normal load and temperature can be monitored and controlled. Measurement of the coefficient of friction at low densities is one of the advantages and possible applications of this apparatus. The investigation shows that the powder compaction is controlled by a combination of powder rearrangement and elastic and plastic deformation of particles. At densities below 4g cm-3 the dominant process is particle rearrangement. No plastic deformation occurs at such low values of density. At densities above 4·5g cm-3 the plastic deformation of the powder surface in contact with the die wall seems to be completed and the coefficient of friction is more or less constant.  相似文献   

16.
A micromechanical model for predicting the densification of particulate matter under hydrostatic loading was developed to account for the time-dependent response of materials to applied loads. Viscoelastic material response used in the analysis was based upon a standard three-parameter rheological model. Compaction data under closed die conditions were collected using an Instron analyzer for different rates of applied load. Densification during the loading phase of PMMA/coMMA powder, a pharmaceutical polymeric coating material, was well predicted by the proposed algorithm, which contrasts with the prediction implied through a static indentation model. Secondary factors which affect compaction such as die-wall friction are also briefly discussed.  相似文献   

17.
The explicit finite element method (FEM) has been used to simulate the compaction of monolithic and composite powder compacts. It is concluded that with the proper FEM model and appropriate loading speed, explicit FEM can be used to simulate powder compaction with satisfactory accuracy. The simulated pressure-density curves for four periodic powders are in reasonable agreement with experiments using model powders consisting of rods. The effects of the friction coefficient, Poisson’s ratio, and hardening exponent on densification are investigated. Powder compacts consisting of particles with larger Poisson’s ratio, larger interparticle friction, and larger hardening exponent are more diffcult to consolidate in monotonic compaction. Compaction of multiparticle arrays is also simulated to assess the effects of packing randomness and particle rearrangement. The results reveal that local packing details affect the compaction behavior and, in general, the more heterogeneous the powder mixture is, the more difficult it is to consolidate the powder compact. Networking of hard particles significantly increases the densification resistance.  相似文献   

18.
粉末冶金温压的致密化机理   总被引:4,自引:2,他引:4  
通过对铁粉的动态压制曲线、脱模力曲线、 X射线衍射、摩擦和润滑的研究, 揭示了温压的致密化机理: 温压成形过程可分为3个阶段, 在初期阶段, 粉末的颗粒重排过程占主导地位, 颗粒重排份额与冷压相比提高15%~31%; 而在后期, 温压致密化以塑性变形为主, 铁粉塑性变形程度的改善又为粉末颗粒的二次重排起了协调作用, 使铁粉获得最大程度的颗粒填充密度; 其间, 温压润滑剂对致密化起了重要作用, 它降低了摩擦因数, 改善了粉末和模壁、粉末和粉末之间的润滑条件, 有效地降低了粉末成形的摩擦阻力, 有利于粉末致密化的顺利进行.  相似文献   

19.
《粉末冶金学》2013,56(1):12-19
Abstract

The cold compaction and vacuum sintering behaviour of a Ti powder and a Ti hydride powder were compared. Master sintering curve models were developed for both powders. Die ejection force, green strength and green porosity were lower for hydride powder than for Ti powder, all probably resulting from reduced cold welding and friction during compaction. For sintering temperatures above ~1000°C, most of the difference in the sintered density of Ti and hydride is explained by assuming equal densification, while taking into account the lower green porosity of compacts made from hydride powder. However, there is evidence that particle fracture during compaction also contributes to increased sintered density for hydride powder. The Ti powder conformed to a master sintering curve model with apparent activation energy of 160 kJ mol?. The activation energy for Ti hydride also appeared to be about 160 kJ mol?, but the model did not fit the experimental data well.  相似文献   

20.
Conclusions The density of compacts is dependent on the powder particle size and its surface condition. The predominating consolidation mechanism for powders having a particle size of less than 0.1 m is interparticle slipping, although the role of plastic deformation increases as the particle size increases. The density of very finely divided powder compacts may be increased significantly by reducing the interparticle friction of the pretreated surfaces by employing a reducing anneal or by adding a more plastic component. Consolidating a powder with a 3- to 8-m particle size can be efficiently achieved without any additional treatments.Translated from Poroshkovaya Metallurgiya, No. 4, pp. 16–20, April, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号