首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of a model molecule, 2,4-dichlorophenol (2,4-DCP), was studied using an activated sludge hydrolytic–aerobic recycling process (HARP). 2,4-DCP and chemical oxygen demand (COD) total removal efficiency in the recycling process was 98% and 96% at the recycling flux of 15 mL/min after 24 h degradation, respectively. With the recycling flux increasing, the peak values of the concentration of volatile fatty acid (VFA) declined. Polysaccharide and protein contents in EPS were dramatically increased as recycling flux increasing from 5 to 15 mL/min in the HARP. There is obviously fit to the linear correlation between the PN/PS ratios and recycling flux. The zeta potentials decreased with recycling flux increasing. As the recycling flux increasing at a certain degree, the increase in polysaccharide and protein contents of EPS could more favor the stability of the HARP.  相似文献   

2.
A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.  相似文献   

3.
Hydroxyapatite (HAP) has stable ion exchange capacity and is a potential environmental catalyst carrier. In this paper, a novel metal–carbon nanocomposite (Cu-HAP/SiO2@carbon) was synthesized as a catalyst to remove 2,4-DCP. The SEM, XRD, FT-IR, XPS and BET were used to characterize the synthesized catalyst materials, the results showed that Cu-HAP/SiO2@carbon has a rich pore structure and a high specific surface area, and the copper element is well dispersed on the surface of the carrier. The results of 2,4-DCP removal effect showed that almost 100 % of 2,4-DCP was removed under the optimal reaction conditions. In addition, the Cu-HAP/SiO2@carbon broaden the applicable pH range and has excellent performance in terms of reusability (93.73 % of removal rate after 5 cycles). Finally, based on the intermediate products identify by HPLC, the degradation mechanism and possible degradation pathway of 2,4-DCP was investigated, EPR was employed to confirm the effects of ·OH.  相似文献   

4.
The biosorption of 2,4-dichlorophenol (2,4-DCP) from aqueous solution on non-living mycelial pellets of Phanerochaete chrysosporium was studied with respect to pH, initial concentration of 2,4-DCP, temperature and pellet size. The fungal biomass exhibited the highest sorption capacity of 4.09 mg/g at an initial pH of 5.0, initial 2,4-DCP concentration of 50.48 mg/l, 25 degrees C and a pellet size of 1.0-1.5 mm in the investigated pH 2.0-11.0, initial concentrations of 5-50 mg/l, temperature 25-50 degrees C, and pellet size of 1.0-2.5 mm. The Freundlich model exhibited a slightly better fit to the biosorption data of 2,4-DCP than the Langmuir model. The biosorption of 2,4-DCP to biomass followed pseudo second-order adsorption kinetics. The second-order kinetic constants decreased with increasing temperature, and the apparent activation energy of biosorption was estimated to be -16.95 kJ/mol. The thermodynamic analysis indicates that the biosorption process was exothermic and that the adsorption of 2,4-DCP on P. chrysosporium might be physical in nature. Both intraparticle diffusion and kinetic resistances might affect the adsorption rate and that their relative effects varied with operation temperature in the biosorption of 2,4-DCP by mycelial pellets.  相似文献   

5.
It has been well-known that 2,4-dichlorophenol (2,4-DCP) is a refractory organic substance which is difficult to treat via traditional treatment process. In this research, a novel palladium (Pd)/graphene oxide (GO)/Ti electrode was modified with electrochemical-deposition method for the degradation of 2,4-DCP via electrochemical degradation process. The structure, morphology and characteristics of the electrode were observed and analyzed with various detecting methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The 2,4-DCP degradation performance was examined with the Pd/GO/Ti electrode under various electrical current intensity of 5, 10 and 20 mA. The highest removal rate of 2,4-DCP was 92.2% obtained under 5 mA. The removal rate of 10 mA was 91.9%, while that of 20 mA was 90.9%. The removal rate has no significant response with the changes of current. Hence, the degradation of 2,4-DCP by the Pd/GO/Ti electrode followed pseudo-first-order reaction under different currents.  相似文献   

6.
In situ bioremediation is a safe and cost-effective technology for the cleanup of organic-contaminated soil, but its remediation rate is usually very slow, which results primarily from limited mass transfer of pollutants to the degrading bacteria in soil media. This study investigated the feasibility of adopting 2D non-uniform electric field to enhance in situ bioremediation process by promoting the mass transfer of organics to degrading bacteria under in situ conditions. For this purpose, a 2D non-uniform electrokinetic system was designed and tested at bench-scale with a sandy loam as the model soil and 2,4-dichlorophenol (2,4-DCP) as the model organic pollutant at two common operation modes (bidirectional and rotational). Periodically, the electric field reverses its direction at bidirectional mode and revolves a given angle at rotational mode. The results demonstrated that the non-uniform electric field could effectively stimulate the desorption and the movement of 2,4-DCP in the soil. The 2,4-DCP was mobilized through soil media towards the anode at a rate of about 1.0 cmd(-1)V(-1). The results also showed that in situ biodegradation of 2,4-DCP in the soil was greatly enhanced by the applied 2D electric field upon operational mode. At the bidirectional mode, an average 2,4-DCP removal of 73.4% was achieved in 15 days, and the in situ biodegradation of 2,4-DCP was increased by about three times as compared with that uncoupled with electric field, whereas, 34.8% of 2,4-DCP was removed on average in the same time period at the rotational mode. In terms of maintaining remediation uniformity in soil, the rotational operation remarkably excelled the bidirectional operation. In the hexagonal treatment area, the 2,4-DCP removal efficiency adversely increase with the distance to the central electrode at the bidirectional mode, while the rotational mode generated almost uniform removal in soil bed.  相似文献   

7.
The catalytic dechlorination of 2,4-dichlorophenol (2,4-DCP) by Ni/Fe bimetallic nanoparticles in the presence of humic acid (HA) was investigated in order to understand their applicability for in situ remediation of groundwater. 2,4-DCP was catalytically dechlorinated to form the final products – phenol (P) via two intermediates, o-chlorophenol (o-CP) and p-chlorophenol (p-CP). It was demonstrated that the carbon mass balances during the dechlorination were between 84% and 92%, and other carbons were adsorbed on the surface of Ni/Fe bimetallic nanoparticles. The experimental results suggest that HA competed for reaction sites on the Ni/Fe bimetallic nanoparticles with 2,4-DCP, and thus reduced the efficiency and rate of the dechlorination of 2,4-DCP. The catalytic degradation slowed down as the increase of HA in solution, and when HA's concentrations were 0, 10, 20 and 30?mg?L?1, the maximum concentrations of o-CP were 0.025, 0.041, 0.039 and 0.034?mM in 10, 30, 30 and 30?min, respectively. High Ni content, low initial pH value, high Ni/Fe nanoparticles’ dosage and high temperature favoured the catalytic dechlorination of 2,4-DCP. The experimental results show that no other intermediates were generated besides Cl?, o-CP, p-CP and P during the catalytic dechlorination of 2,4-DCP.  相似文献   

8.
Degradation of 2,4-dichlorophenol by using glow discharge electrolysis   总被引:6,自引:0,他引:6  
Degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous by glow discharge electrolysis (GDE) has been investigated. Ultraviolet (UV) absorption spectra, atomic force microscopy (AFM), high performance liquid chromatography (HPLC) and gas chromatogram-mass spectrum (GC/MS) are used to monitor the degradation process and to identify the major oxidation intermediate products. It has been found that 2,4-DCP undergoes a series of intermediate step, which leads to form a number of intermediate products, mainly isomeric chlorophenols and aliphatic acids. These products are further oxidized, eventually, mineralized into CO(2) and Cl(-). A degradation pathway for 2,4-DCP is proposed on the basis of detection of intermediate compounds.  相似文献   

9.
Effect of a biogenic substrate (peptone) concentration on the performance of sequencing batch reactor (SBR) treating 220 mg/l 4-chlorophenol (4-CP) and 110 mg/l 2,4-dichlorophenol (2,4-DCP) mixtures was investigated. In this context, peptone concentration was gradually decreased from 300 mg/l to null in which chlorophenols were fed to the reactor as sole carbon and energy sources. By this way, the effect of peptone concentration on observed yield coefficient (Y), biomass concentration, chlorophenols and COD removal performances were investigated. Decreasing peptone concentration accompanied with lower biomass concentration led to increase in peak chlorophenol and COD concentrations within the reactor during each SBR cycle. This, in turn, caused noteworthy declines in the removal rates as chlorophenol degradations followed Haldane substrate inhibition model. Also, increased peak chlorophenol concentrations led to the accumulation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which is -meta cleavage product of 4-CP. Despite the decreased removal rates, complete chlorophenols and CHMS degradation, in addition to high COD removal efficiencies (>90%), were observed for all studied conditions, even chlorophenols were added as sole carbon and energy sources. Another significant point is that 2,4-DCP at slightly elevated concentrations (>20 mg/l) within the reactor caused a strong competitive inhibition on 4-CP degradation. In SBR, feeding the influent to the reactor within a certain period (i.e. filling period) provided dilution of coming wastewater, which decreased the chlorophenols concentrations to which microorganisms were exposed. Therefore, use of SBR may help to avoid both self and competitive inhibitions in the treatment of 4-CP and 2,4-DCP mixture especially in the presence high biogenic substrate concentrations. In addition, isolation and identification studies have indicated that Pseudomonas sp. and Pseudomonas stutzeri were dominant species in the acclimated mixed culture.  相似文献   

10.
A laboratory-scale biological plant composed of two aerobic reactors operating at 35 degrees C was used to study the biodegradation of coke wastewater. The main pollutants to be removed are organic matter, especially phenols, thiocyanate and ammonium nitrogen. The concentrations of the main pollutants in the wastewater during the study ranged between 922 and 1,980 mg COD/L, 133 and 293 mg phenol/L, 176 and 362 mg SCN/L and 123 and 296 mg NH(4)(+)-N/L. The biodegradation of these pollutants was studied employing different hydraulic residence times (HRT) and final effluent recycling ratios in order to minimize inhibition phenomena attributable to the high concentrations of pollutants. During the optimisation of the operating conditions, the removal of COD, phenols and thiocyanate was carried out in the first reactor and the nitrification of ammonium took place in the second. The best results were obtained when operating at an HRT of 98 h in the first reactor and 86 h in the second reactor, employing a recycling ratio of 2. The maximum removal efficiencies obtained were 90.7, 98.9, 98.6 and 99.9% for COD, phenols, thiocyanate and NH(4)(+)-N, respectively. In order to remove nitrate, an additional reactor was also implemented to carry out the denitrification process, adding methanol as an external carbon source. Very high removal efficiencies (up to 99.2%) were achieved.  相似文献   

11.
Chlorophenols are harmful pollutants, frequently found in the effluents of several industries. For this reason, many environmental friendly technologies are being explored for their removal from industrial wastewaters. The aim of the present work was to study the scale up of 2,4-dichlorophenol (2,4-DCP) removal from synthetic wastewater, using Brassica napus hairy roots and H2O2 in a discontinuous stirred tank reactor. We have analyzed some operational conditions, because the scale up of such process was poorly studied. High removal efficiencies were obtained (98%) in a short time (30 min). When roots were re-used for six consecutive cycles, 2,4-DCP removal efficiency decreased from 98 to 86%, in the last cycle. After the removal process, the solutions obtained from the reactor were assessed for their toxicity using an acute test with Lactuca sativa L. seeds. Results suggested that the treated solution was less toxic than the parent solution, because neither inhibition of lettuce germination nor effects in root and hypocotyl lengths were observed. Therefore, we provide evidence that Brassica napus hairy roots could be effectively used to detoxify solutions containing 2,4-DCP and they have considerable potential for a large scale removal of this pollutant. Thus, this study could help to design a method for continuous and safe treatment of effluents containing chlorophenols.  相似文献   

12.
Chlorophenols are one of the most important groups of priority pollutants, due to their high toxicity, mutagenicity and carcinogenicity. Although activated carbon has been the preferred choice for the removal of such pollutants from wastewaters, the search for cheaper alternative sorbents became common in the last years. Fly ash, a by-product from coal burning power plants, has a surface composition that may enable the sorption of specific organic compounds. Therefore, this feasibility study presents the optimization of the operating parameters of a fixed-bed column containing fly ash particles, percolated by aqueous solutions of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) with concentrations of 1 and 100 microg/ml. Both chlorophenols were analysed by gas chromatography with electron capture detection (GC-ECD), after solid-phase microextraction (SPME), with limits of detection (LODs) of 7.28 microg/l for 2,4-DCP and 1.76 microg/l for PCP. Removal efficiencies above 99% were obtained for an initial concentration of 10 microg/ml of chlorophenols. Column saturation was achieved after 7h of continuous operation for 2,4-DCP and 10h for the PCP for feed levels of 10 microg/ml. Fly ash exhibited more affinity towards the sorption of PCP, in comparison to 2,4-DCP.  相似文献   

13.
Removal of chlorophenols from aqueous solution by fly ash   总被引:1,自引:0,他引:1  
Fly ash from coal-fired thermal power plants can be used for the removal of 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP) with enthalpy changes of about -3 kcal/mol. The amounts of 2-CP and 2,4-DCP removed are affected by the pH value of the solution. The efficiency of removal improves when the pH value is less than the pK(a) values of 2-CP and 2,4-DCP, respectively. The adsorbed amount of chlorophenol by fly ash is also affected by particle diameter, carbon content, and the specific surface area of the ash used in this study. As expected, more adsorption takes place with fly ash of higher carbon content and larger specific surface area. Moreover, the adsorbed amount of chlorophenol is not influenced by the matrix in the wastewater, as shown by studying the removal of 2-CP and 2, 4-DCP in wastewater from a synthetic fiber plant. Chlorophenols in the wastewater were also removed efficiently through a fly ash column, with breakthrough times being inversely proportional to flow rates.  相似文献   

14.
Nutrient disposal to sensitive areas, particularly nitrogen and phosphorus from wastewater treatment plants, provokes eutrophication reducing water quality. Fixed film technology is widely used for the removal of organic matter and nitrogen by the biological process of nitrification-denitrification. This paper studies a nitrification and post-denitrification lab-scale plant with a downflow aerobic submerged filter for removal of organic matter and nitrification, followed by an anoxic upflow biofilter for denitrification. Recycled construction material (clay shists) was employed as support material and methanol was used as carbon source. After 2 weeks of acclimation in which nitrification reached steady-state conditions, different hydraulic loadings (0.35-1.59 m(3)/m(2)h) and air flowrates (7.78-43.5 m(3)/m(2)h) were applied for 1 year. The highest hydraulic loading which complied with the EU regulation on nitrogen disposal was 0.71 m(3)/m(2)h (1.6 h). Hydraulic retention time (HRT), which corresponded to a nitrogen removal of 0.64 kg N/m(3) per day operating at an air flowrate of 25.6 m(3)/m(2)h. Concerning to organic matter removal efficiency, the aerobic reactor accepted a maximum chemical oxygen demand (COD) volumetric loading of 16.0 kg COD/m(3) per day with a 75% COD removal efficiency. For all the tests carried out, suspended solids (SS) concentration in the outlet water was less than 35 mg/l.  相似文献   

15.
A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91–94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to aerobic effluents.  相似文献   

16.
This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.  相似文献   

17.
A laboratory-scale activated sludge plant composed of a 20 L volume aerobic reactor followed by a 12 L volume settling tank and operating at 35 degrees C was used to study the biodegradation of coke wastewater. The concentrations of ammonium nitrogen (NH(4)(+) -N), phenols, chemical oxygen demand (COD) and thiocyanate (SCN(-)) in the wastewater ranged between 504 and 2,340, 110 and 350, 807 and 3,275 and 185 and 370 mg/L, respectively. The study was undertaken with and without the addition of bicarbonate. The addition of this inorganic carbon source was necessary to favour nitrification, as the alkalinity of the wastewater was very low. Maximum removal efficiencies of 75%, 98% and 90% were obtained for COD, phenols and thyocianates, respectively, without the addition of bicarbonate. The concentration of ammonia increased in the effluent due to both the formation of NH(4)(+) as a result of SCN(-) biodegradation and to organic nitrogen oxidation. A maximum nitrification efficiency of 71% was achieved when bicarbonate was added, the removals of COD and phenols being almost similar to those obtained in the absence of nitrification. Batch experiments were performed to study the influence of pH and alkalinity on the biodegradation of phenols and thiocyanate.  相似文献   

18.
2-Chlorophenol (2-CP) degrading aerobic granules were cultivated in a sequencing batch reactor (SBR) in presence of glucose. The organic loading rate (OLR) was increased from 6.9 to 9.7 kg COD m(-3)d(-1) (1150-1617 mg L(-1)COD per cycle) during the experiment. The alkalinity (1000 mg L(-1) as CaCO(3)) was maintained throughout the experiment. The specific cell growth rate was found to be 0.013 d(-1). A COD removal efficiency of 94% was achieved after steady state at 8h HRT (hydraulic retention time). FTIR, UV, GC, GC/MS studies confirmed that the biodegradation of 2-CP occurs via chlorocatechol (modified ortho-cleavage) pathway. Biodegradation kinetics followed the Haldane model with kinetic parameters: V(max)=840 mg2-CPgMLVSS(-1)d(-1), K(s)=24.61 mg L(-1), K(i)=315.02 mg L(-1). Abiotic losses of 2-CP due to volatilization and photo degradation by sunlight were less than 3% and the results of genotoxicity showed that the degradation products are eco-friendly.  相似文献   

19.
The use of TiO2 as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. However, TiO2 absorbed the UV light which is only small part of sunlight reaching earth surface to activate photocatalytic procedure effectively is a major disadvantage. Therefore, studies on the development of new TiO2 wherein its photocatalytic activity can be activated by visible light which is the major part of sunlight will be valuable for field application. In this study, we evaluate the photocatalytic degrading efficiency of porphyrins/TiO2 complexes on the organic pollutants under irradiation with visible light (λ = 419 nm). The results showed that the photodecomposition efficiency of 2,4-dichlorophenol (2,4-DCP) wastewater by using porphyrin/TiO2 irradiated under visible light for 4 h was up to 42-81% at pH 10. These evidences reveal that the system of porphyrin/TiO2 complexes has also significantly efficiency of photocatalytic degradation for some hazardous or recalcitrant pollutants under visible light irradiation.  相似文献   

20.
为提高高级氧化技术对内分泌干扰物的降解和矿化性能,首次研究了(TiO2/Ti-Fe)-石墨毡双阳极光电协同催化氧化体系,并考察了其对2,4-二氯苯酚的光催化氧化降解性能.研究了电流在TiO2/Ti-Fe两阳极上的分配,外加电压,pH等主要因素对2,4-二氯酚降解效率的影响及反应过程中H2O2的生成及积累情况.实验结果表明,本体系不仅具有较高的H2O2生成效率和较强的光催化氧化降解性能,而且该体系可以在较宽的pH范围内工作.在较低的电流密度下反应60 min,2,4-二氯酚的降解率可达95%以上,而矿化率高达80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号