首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoreversible gelation of a triblock copolymer polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene in n‐octane and two solvent mixtures of n‐octane and 4‐methyl‐2‐pentanone with a high n‐octane content has been studied. n‐Octane and 4‐methyl‐2‐pentanone are selective solvents for the middle poly(ethylene/butylene) block and the end polystyrene blocks, respectively. The influence of the solvent composition on the sol–gel transition and the mechanical properties of the gels was studied. The gel formation temperature increased with the copolymer concentration and the n‐octane content in the solvent system. The mechanical properties of the different gels were studied through oscillatory shear measurements. The concentration dependence of the elastic storage modulus showed an exponent close to that expected for gels in good solvents (2.25) that possess a structure similar to those of chemical networks. © 2002 Society of Chemical Industry  相似文献   

2.
Effect of seeds on the formation of sol-gel mullite   总被引:3,自引:0,他引:3  
Mullite precursor gels have been prepared from a mixture of particulate boehmite sol and tetraethoxysilane at a pH of 4. The sol has been seeded with submicron size -Al2O3, γ-Al2O3 and mullite limited to two percent by weight of the mullite phase. These gels have been invesitgated with respect to phase formation, densification and microstructural development. Dilatometric studies on the seeded precursor gels indicate marked shrinkage in their profiles. Of the different seed nuclei, fine mullite particles have shown excellent influence in the early ceramic phase formation as well as densification. Further they induce complete transformation of the precursor gel to the high temperature phase as well as a uniform fine-grained microstructure.  相似文献   

3.
For developing polyethylene (PE) fibers with relatively high mechanical properties but low cost, the rheological behaviors of ultrahigh molecular weight polyethylene (UPE) and low density polyethylene (LDPE) blending gels (UL blending gels) were investigated in terms of the shear‐induced chain interactions and the sol–gel transitions. UL blending gels with a fixed blend ratio 1/1 of UPE and LDPE but different solid contents (SCs) ranging from 2 wt% (UL‐2) to 10 wt% (UL‐10) were prepared using paraffin oil as solvent. The UL‐10 showed a more significant shear thinning behavior than others, and exhibited a little bit lower apparent viscosity than UPE gel with 5% SC (UPE‐5) at elevated temperature even though the SC of UL‐10 is double of that of UPE‐5. UL blending gel with low apparent viscosity and high SC could ensure smoothly and high‐efficient spinning. Rheological measurements confirmed no significant solid‐liquid phase separation of the system of UPE and LDPE in paraffin oil. At the same time, the macromolecular orientation under shear and structural viscosity also assured the blending gel UL‐10 an excellent spinning performance. UL blending fibers were prepared. The tensile strength of UL‐10 fiber reached 1.2 GPa which would satisfy industrial applications demanding relative high mechanical properties. POLYM. ENG. SCI., 58:22–27, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
Composite poly(ε‐caprolactone) (PCL)–silica materials for potential use in orthopaedic applications have been prepared by a sol–gel method using an experimental design approach to investigate the effect of synthesis variables, separately and together, on the physical form of the organic polymer. A combination of differential scanning calorimetry, X‐ray diffraction and Fourier‐transform infrared methods were used to obtain information on the arrangement of the organic polymer in the hybrid material. As our studies investigated the effect of synthesis variables simultaneously, it was possible to establish that the increase of tetraethyl orthosilicate (TEOS)/PCL and HCl/TEOS molar ratios decreased the poly(ε‐caprolactone) crystallinity and provided for a better mixing of the two phases. At a mechanistic level it was possible to show that increase in catalyst content affected the condensation of silicon containing species. In vitro calcium phosphate‐forming ability tests using the static biomimetic method have been carried out on selected PCL–silica sol–gels. In vitro bioactivity was only observed for PCL–silica sol–gel composites with high silica content (30% weight). Changes in catalyst levels had a smaller but still significant effect. Calcium phosphate formation on largely non‐porous surfaces is proposed to occur via the formation of a silica sol–gel layer, and is influenced by the topography and the chemistry of the materials surface. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Thermosensitive poly(organophosphazene) gels have been synthesized with a host of side groups, including α‐amino‐ω‐methoxy‐poly(ethylene glycol), hydrophobic amino acid esters (PheOEt, LeuOEt, and IleuOEt), depsipeptide ethyl ester (GlyGlycOEt), and lysine ethyl ester (lysOEt). The fraction of the last side group, lysOEt, which possesses two amine functional groups, was designed to be in the range of 0.1–0.3 mol per polymer unit. The poly(organophosphazenes) have been characterized via 1H‐ and 31P‐NMR spectroscopies, GPC, and elemental analysis. The phase transition behavior of the poly(organophosphazenes) in aqueous solution has been determined via viscometry. Some of the poly(organophosphazenes) with amino functional groups exhibit reversible sol–gel transitions at temperatures near those of the human body, when in aqueous solution. These polymers form a sol at lower temperatures, and become gels at higher temperatures. Also, these polymer solutions have been found to behave generally like Newtonian fluids in the sol state, but appear to exhibit pseudoplastic qualities in the gel state. The polymers possessing depsipeptide ethyl esters (ethyl‐2‐(O‐glycyl)glycolate) as a side group tend to exhibit much higher degradation rates under physiological conditions than do those which lack the depsipeptide ethyl ester group. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120:998–1005, 2011  相似文献   

6.
The current study deals with the development of lanolin‐based emulsion gels by hot emulsification method. Bright‐field, phase contrast, and fluorescent micrographs of the gels have shown the uniform distribution of circular water droplets in the formulations. Coalescence of water droplets was observed in gels containing higher proportion of water. Fourier transform infrared spectrophotometric studies indicated absence of Ln‐drug chemical interactions. X‐ray diffraction studies suggested an increase in amorphousness of the gels with the incorporation of water into the gel structure. The salicylic acid (SA), model drug, release from the gels was found to follow Higuchi kinetics. Krossmeyer–Peppas model fitting indicated non‐Fickian release of the drug. As the water content of the gels increased, there was a corresponding increase in the rate of release of the drug. The gels showed non‐Newtonian and thixotropic flow behavior. The gel to sol transition and melting temperatures of the gels were identified by differential scanning calorimetric (DSC) thermal analysis and falling ball method. DSC thermograms indicated an increase in thermal stability with the increase of water content in the gels. The gels showed sufficient spreadability and biocompatibility characteristics to be used as topical formulations. SA loaded gels showed good antimicrobial efficacy against Bacillus subtilis, a Gram‐positive bacterium. Based on the preliminary studies, the developed gels may be regarded as carriers in topical drug delivery. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Thin coating of crosslinked polymethylhydrosiloxane are grafted on silica using sol–gel process that leads to polymer layers tailored in term of thickness and elasticity. The degree of crosslinking is tuned by sol–gel polycondensation of a mixture of methyldiethoxysilane(DH) HSi(CH3)(OCH2CH3)2 and triethoxysilane (TH) HSi(OCH2CH3)3, yielding triethoxysilane‐based networks. Samples with well‐defined thicknesses from nanometer to micrometer range are prepared by sol–gel dip‐coating method on silicon surface. Homogeneous or gradient‐thickness coating can be produced in this way. It results in surface‐attached networks bearing Si? H functionalities covalently anchored to the substrate. Powdered gels of DH/TH composition from 50/50 to 95/5 (mol %) were also prepared for a comparison purpose. The structure of the gels was investigated by NMR and FTIR, showing that DH/TH mixtures react totally to yield homogeneous matrix. The surface‐attached polymer films are very stable and present high hydrophobicity as evidenced by contact angle measurements. Their surface and mechanical properties have been qualitatively studied using the atomic force microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1504–1516, 2007  相似文献   

8.
Several lamellar silicates (Montmorillonite, Hectorite, Mica) showing different host structures and aspect ratios were modified with octadecylammonium ions by a cationic exchange process. The resulting organoclays were characterized using thermal gravimetric analysis and X‐ray diffraction, which allowed us to estimate the amount of surfactants within the organoclays and their organization in the interlamellar spacing. Some local pseudo‐organizations were found and checked by differential scanning calorimetry (DSC). The interactions of organophilic silicates were evaluated, without any shear, with the precursors of a rubbery epoxy/amine network. These silicate/monomers interactions were monitored via the measurements of the interlamellar swelling, the surface energies and the physical gel formation. The organoclays used form gels in the monomers above the percolation threshold if no shear is applied and present a gel/sol transition at a critical shear stress. Gel strength determined from storage modulus and viscosity values determined at high shear rates reveal different organizations of clay in the monomers depending on the silicate aspect ratio and silicate/monomers interactions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1380–1390, 2006  相似文献   

9.
The gellation of metalized and non‐metalized ethanol with a methylcellulose gelling agent and its effect on the rheological properties (flow and dynamic study) of these gels is reported herein. The rheological study shows that increasing the shear rate reduces the apparent viscosity for a given yield stress (for a shear rate range of 1 to 12 s−1) for both shear rate ranges (1 to 12 and 1 to 1000 s−1) covered in present experiment. The gellant and metal particle concentrations significantly influence the gel apparent viscosity. Distinct changes in thixotropic behavior were observed, while decreasing the concentration of MC gellant and Al metal particles in the ethanol gels. The dynamic study showed that all of the linear viscoelastic regions (LVE) of the gel samples were independent of strain percentage (1 to 10). The G′ values depended on the frequency and exceeded the G′′ values, which indicated a gel‐like highly structured material. The tanδ values showed that all of the ethanol gels were elastic and weak physical gels with a high degree of cross‐linking.  相似文献   

10.
Hybrid Gels for Homoepitactic Nucleation of Mullite   总被引:2,自引:0,他引:2  
Hybrid gels, defined as gels from mixtures of polymerically and colloidally derived sols, offer many opportunities for crystalline microstructure development upon heating. In this study, hybrid mullite gels are formed by mixing a colloidal boehmite—silica sol with a polymeric aluminum nitrate—tetraethoxysilane-derived sol. The polymeric gel crystallizes in situ to form mullite that acts as seed crystals for homoepitactic nucleation during the subsequent transformation of the colloidal component of the hybrid gel. Compared with the entirely colloidal gel, the introduction of a 30 wt% polymeric gel fraction results in an increase in apparent nucleation frequency from ∼5x1011 to ∼1x1014 nuclei / cm3 at 1375°C, a reduction in high-temperature grain size from 1.4 to 0.4 μm at 1550°C, and an increase in the degree of microstructural homogeneity, as evidenced by intragranular pore removal.  相似文献   

11.
采用旋转流变仪研究了超高分子量聚乙烯(UHMWPE)凝胶的流变行为。通过动态应变扫描测定了UHMWPE凝胶的线性黏弹区;通过动态温度扫描、动态频率扫描和稳态速率扫描研究了温度、浓度、剪切速率对凝胶流变行为的影响。结果表明,浓度为2%~22%的UHMWPE凝胶的线性黏弹区对应的应变下限为2%,上限为40%,且温度对凝胶线性黏弹区的影响较大;浓度为6%的UHMWPE凝胶,在180℃时,弹性模量最大,凝胶内部的黏结性最强;UHMWPE凝胶熔体的黏度随扫描频率、剪切速率的升高而降低,呈现明显的剪切变稀行为,属于假塑性流体;剪切速率较高时,UHMWPE凝胶的黏度对温度的变化更敏感。  相似文献   

12.
《分离科学与技术》2012,47(6):1474-1487
Abstract

An environmental waste remediation method is presented where porous cylindrical monoliths are interposed as septa between a solution contaminated with metal ions and a solution of a precipitant. Precipitant and contaminant diffuse and generate precipitate nano‐ and micro‐particles inside the monoliths. Two types of silica sol‐gel monoliths were tested. One class of materials was prepared following a conventional base‐catalyzed route which yielded fragile silica monoliths with pore diameters on the order of 7–10 nm. A second class of materials material consisted of templated silica macroporous monoliths that were cross‐linked with diisocyanate. These materials had pore diameters on the order of microns and were mechanically extremely strong, having a Young modulus in excess of 400 MPa. Both types of silica gel monoliths proved very versatile, and allowed to precipitate a wide variety of metal ions, including toxic metals such as Cd2+, and fission by‐products such as lanthanides and Sr2+. The capacity of the gel monoliths was also very high, at least 20 times higher than the capacity of conventional derivatized gels. Most importantly, precipitation inside the macroporous gels was a factor 7–8 more rapid than in microporous gels. The results indicate that macroporous cross‐linked sol‐gel monoliths are a promising material for the development of efficient, mechanically strong filter elements for environmental remediation.  相似文献   

13.
Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel‐Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine‐based fuels, gelled with polysaccharides, were characterized as shear‐thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red‐fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers‐Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed.  相似文献   

14.
By sol‐gel process, mullite samples doped with 0.002M, 0.02M, 0.1M, 0.15M, and 0.2M of iron, nickel, and copper are prepared. Prepared gels were then dried, grinded, pressed into pellets, and sintered at temperatures 1000°C and 1300°C for 4 h. Mullite densification behavior was analyzed. Our intention is to study the role of metal ions in influencing mullitization behavior in the case of the sol‐gel reaction process, to provide useful information of mullite. This study deals with the effect of metal ions on mullite formation, microstructure, and densification behavior in single‐phase sol‐gel‐derived mullite.  相似文献   

15.
A series of sol‐gel derived organic–inorganic hybrid coatings consisting of organic epoxy resin and inorganic silica were successfully synthesized through sol‐gel approach by using 3‐glycidoxypropyl‐trimethoxysilane as coupling agent. Transparent organic–inorganic hybrid sol‐gel coatings with different contents of silica were always achieved. The hybrid sol‐gel coatings with low silica loading on cold‐rolled steel coupons were found much superior improvement in anticorrosion efficiently. The as‐synthesized hybrid sol‐gel materials were characterized by Fourier‐transformation infrared spectroscopy, 29Si‐nuclear magnetic resonance spectroscopy and transmission electron microscopy. Effects of the material composition of epoxy resins along with hybrid materials on the thermal stability, Viscoelasticity properties and surface morphology were also studied, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A series of organic–inorganic hybrid thermosensitive gels with three different structures were prepared from N‐isopropylacrylamide (NIPAAm), and N, N′‐methylenebisacrylamide (NMBA) and tetraethoxysilane (TEOS) [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA, and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol–gel reaction in this study. The effect of different gel structures and coupling agent on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN and with or without existence of TMSPMA as the bridge chain between networks. The NT‐semi‐IPN gel had higher swelling ratio and faster diffusion rate because poly(NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had a poor thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of organic‐inorganic hybrid thermosensitive gels with three different structures and different contents of tetraethoxysilane (TEOS) were prepared from N‐isopropylacrylamide (NIPAAm), and N,N′‐methylene‐bis‐acrylamide (NMBA) and TEOS [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol‐gel reaction in this study. The effect of TEOS content on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN, existence of TMSPMA as the bridge chain between networks, and content of TEOS. The NT‐semi‐IPN gel had higher swelling ratio because poly (NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had bad thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. Increasing TEOS content would also reduce the thermosensitivity of the hybrid gels. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
Silica gels organically modified and doped with the ruthenium species tetra‐n‐propylammonium perruthenate (TPAP) are leach‐proof, selective catalysts for the aerobic oxidation of alcohols to carbonyl compounds with dioxygen at low pressure in compressed carbon dioxide. The catalytic sol‐gels are recyclable and the correlation between the reactivity of the materials and their surface polarity and textural properties suggests valuable information on the chemical behaviour of sol‐gel entrapped silica catalysts in oxidation catalysis which is of relevant interest considering the importance of heterogeneous oxidative dehydrogenation of alcohols in fine chemistry. An explanation of the structure‐activity relationship is proposed to provide guidelines for the further development of efficient solid oxidation catalysts for conversions in supercritical carbon dioxide.  相似文献   

19.
A spectrophotometer was used to measure the turbidity of a carrageenan gel as a function of temperature. The optical transmission of the gels was found to decrease as the gels undergo the sol–gel phase transition. The differential of transmission (I) with respect to temperature (T), dI/dT, exhibits peaks for both the cooling and the heating runs with the peak positions corresponding to temperatures of gelation and melting, respectively. The full-width at half-height of the dI/dT peak obtained from the heating curve is about 2.5 times broader than that from the cooling curve. This indicates that the melting of gels may involve multiple relaxation mechanisms. The area of the hysteresis loop covered by the cooling and the heating curves increases with a decrease in the scanning rate. The thermal cycling has little impact on the sol–gel transition in the gels. The experiments show that turbidity is a powerful tool for studying the sol–gel transition in carrageenan gels. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:29–35, 1998  相似文献   

20.
The rheological properties of hydrophilic fumed silica dispersed in polyethylene glycol (PEG) were investigated. The dispersion was prepared by dispersing the fumed silica in PEG with various concentrations. The reversible sol–gel transition was observed over 5 wt % of silica concentration as a function of temperature. The gelation temperature was found to depend on the applied shear stress and silica concentration, and the high shear stress was found to lead to the decrease of sol–gel transition temperature of the dispersion with the same silica concentration. As the silica concentration increases, the sol–gel transition shifts to the lower temperature. © 2006 Wiley Periodicals, Inc. J Apple Polly Sci 103: 2481–2486, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号