首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds in Na2O‐MoO3 system were prepared by the solid‐state reaction route. The phase composition, crystal structures, microstructures, and microwave dielectric properties of the compounds have been investigated. This series of compounds can be sintered well at ultra‐low temperatures of 505°C–660°C. The sintered samples exhibit good microwave dielectric properties, with the relative permittivities (εr) of 4.1–12.9, the Q × f values of 19900–62400 GHz, and the τf values of ?115 ppm/°C to ?57 ppm/°C. Among the eight compounds in this binary system, three kinds of single‐phase ceramics, namely Na2MoO4, Na2Mo2O7 and Na6Mo11O36 were formed. Furthermore, the relationship between the structure and the microwave dielectric properties in this system has been discussed. The average NaI‐O and MoVI‐O bond valences have an influence on the sintering temperatures in Na2O‐MoO3 system. The large valence deviations of Na and Mo lead to a large temperature coefficient of resonant frequency. The X‐ray diffraction and backscattered electron image results show that Na2MoO4 doesn't react with Ag and Al at 660°C. Also, Na2Mo2O7 has a chemical compatibility with Al at 575°C.  相似文献   

2.
Ag2MoO4 ceramic was prepared by using the solid‐state reaction method, which could be sintered at 450°C for 2 h, having a relative permittivity of 8.08, a Qf value of 17 000 GHz, and a temperature coefficient of resonance frequency about ?133 ppm/°C. Ag2MoO4 ceramic was chemically compatible with silver but reacted seriously with aluminum to form (Ag0.5Al0.5)MoO4 during the sintering. The fitting of infrared spectra and the Shannon's additive rule were employed to study intrinsic dielectric behaviors of the ceramics at microwave region. Ionic displacive polarization and the electronic polarization contributed almost equally to the dielectric permittivity of the ceramic at microwave region. The Ag2MoO4 ceramics could be a good candidate for ultra‐low temperature co‐fired microwave devices.  相似文献   

3.
Ceramic composites of B2O3–Bi2O3–SiO2–ZnO (BBSZ) glass mixed with Al2O3 (10–50 vol%) were sintered at 450°C, and their microstructural and dielectric properties investigated. Dense structures were obtained when the Al2O3 content was lower than 30 vol%. Raman, XRD, and FESEM showed the existence of a secondary phase, Bi24Si2O40, in all samples. The dielectric properties of the composite with 30 vol% addition of Al2O3 showed good dielectric properties with εr of 14.8 and 20.8 and 32.5 at 100 kHz and 100 MHz and 1 GHz, respectively. The tanδ values at the same frequencies were 0.004 and 0.006 and 0.016. The results show that BBSZ glass with different amounts of Al2O3 exhibit widely applicable relative permittivity values and affordable loss and are thus promising candidates for ultra‐low sintering temperature applications.  相似文献   

4.
The Ag2Mo2O7 and Ag6Mo10O33 ceramics for ultra‐low temperature co‐fired ceramic application were prepared by the solid‐state reaction route. The optimized densification temperatures of Ag2Mo2O7 and Ag6Mo10O33 are 460°C and 500°C, respectively. The phase structures and microstructures of these ceramics were systematically studied. The Ag2Mo2O7 ceramic sintered at 460°C/4 h exhibits excellent microwave dielectric properties with εr=13.3, Q×f=25 300 GHz and τf=?142 ppm/°C at 9.25 GHz. The Ag6Mo10O33 ceramic sintered at 500°C/4 h shows the microwave dielectric properties with εr=14.0, Q×f=8500 GHz and τf=?50 ppm/°C at 9.00 GHz. Moreover, when Ag2Mo2O7 samples are sintered at ultra‐low sintering temperatures of 420°C‐490°C, the Q×f values of them are all above 20 000 GHz. Besides, the Ag2Mo2O7 ceramic does not react with silver powder or aluminum powder. The variation of relative permittivity, resonant frequency, and Q×f values as a function of operating temperature has been also studied. All the results indicate that the Ag2Mo2O7 ceramic is a good candidate for ultra‐low temperature co‐fired microwave devices.  相似文献   

5.
Ultra low temperature co‐fired ceramics system based on zinc borate 3ZnO–2B2O3 (3Z2B) glass matrix and SiO2 filler was investigated with regard to the phase composition, the microstructure and the dielectric properties as functions of the filler content and sintering temperature. The softening temperature of 554°C and the crystallization temperature of around 650°C for the glass were confirmed by Differential Thermal Analysis result. The X‐ray diffraction results show that all SiO2‐filled samples were made up of SiO2, α‐Zn(BO2)2, Zn3B2O6 phases. And there was no chemical reaction between SiO2 and the glass during densification. And then the dielectric constant decreased with the increasing content of SiO2. At the level of 15 wt% SiO2 addition, the composites can be densified at a sintering temperature of 650°C for 30 min, and showed the optimal dielectric properties at 1 MHz with the dielectric constant of 6.1 and the dielectric loss of 1.3 × 10?3, which demonstrates a good potential for use in LTCC technology.  相似文献   

6.
In this work, a novel low‐temperature firing microwave dielectric ceramic LiKSm2(MoO4)4 was prepared via solid‐state reaction method. Ceramic samples with relative densities about 94.6% were obtained at sintering temperature 640°C–680°C. The best microwave dielectric properties was obtained in ceramic sample sintered at 620°C with a permittivity about 11.5, a Q × f value about 39 000 GHz and a temperature coefficient of frequency about ?15.9 ppm/°C. According to XRD patterns and backscattered electron micrograph, combined with Energy Dispersive Spectra analysis, of cofired samples with 30 wt% aluminum sintered at 620°C/4 h, the LiKSm2(MoO4)4 ceramic was found to be chemically compatible with Al but react seriously with Ag, forming AgSmMo2O8 phase, at its sintering temperature.  相似文献   

7.
The crystal structure, microstructure, and microwave dielectric properties of forsterite‐based (Mg1–xNix)2SiO4 (= 0.02–0.20) ceramics were systematically investigated. All samples present a single forsterite phase of an orthorhombic structure with a space group Pbnm except for a little MgSiO3 secondary phase as x > 0.08. Lattice parameters in all axes decrease linearly with increasing Ni content due to the smaller ionic radius of Ni2+ compared to Mg2+. The substitution of an appropriate amount of Ni2+ could greatly improve the sintering behavior and produce a uniform and closely packed microstructure of the Mg2SiO4 ceramics such that a superior × f value (152 300 GHz) can be achieved as = 0.05. The τf value was found to increase with increasing A‐site ionic bond valences. In addition, various additives were used as sintering aids to lower the sintering temperature from 1500°C to the middle sintering temperature range. Excellent microwave dielectric properties of εr~6.9, × f~99800 GHz and τf~?50 ppm/°C can be obtained for 12 wt% Li2CO3‐V2O5‐doped (Mg0.95Ni0.05)2SiO4 ceramics sintered at 1150°C for 4 h.  相似文献   

8.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

9.
Li2O–MgO–TiO2 ternary system is an important microwave dielectric ceramic material with excellent properties and prospect in both scientific research and application. A phase diagram of the Li2O–MgO–TiO2 ternary system was established in this article, based on earlier research results and our present work. Microwave dielectric properties with compositions in different regions of the phase diagram have been analyzed. We found that the 0.33 Li2MgTi3O8–0.67 Li2TiO3 ceramics sintered at 1200°C exhibited excellent dielectric properties: Q × f value = 80 476 GHz (at 7.681 GHz), εr = 24.7, τf = +3.2 ppm/°C. We also designed two ceramic systems in the Li‐rich region of the Li2O–MgO–TiO2 ternary system, which received little attention in the past decades, because many excellent single‐phase ceramics, such as Li2MgTiO4, Li2MgTi3O8 and MgTiO3, have been found in the Ti‐rich region. The ceramic systems have low sintering temperatures but also relatively poor dielectric properties.  相似文献   

10.
A new ultra‐low fire glass‐free microwave dielectric material Li3FeMo3O12 was investigated for the first time. Single phase ceramics were obtained by the conventional solid‐state route after sintering at 540°C–600°C. The atomic packing fraction, FWHM of the Ag oxygen‐octahedron stretching Raman mode and Qf values of samples sintered at different temperatures correlated well with each other. The sample with a Lower Raman shift showed a higher dielectric constant. Interestingly, the system also showed a distinct adjustable temperature coefficient of resonant frequency (from ?84× 10?6/°C to 25 × 10?6/°C).  相似文献   

11.
The influence of BaCu(B2O5) (BCB) on densification, phases, microstructure and microwave dielectric properties of ZnNb2O6xTiO2 (x = 1.70–1.90) composite ceramics have been investigated. Undoped ZnNb2O6–1.8TiO2 ceramics sintered at 1200°C exhibit temperature coefficient of resonant frequency (τf) ~9.25 ppm/°C. When BaCu(B2O5) was added, the sintering temperature of the ZnNb2O6–1.8TiO2 composite ceramics was effectively reduced to 950°C. The results indicated that the permittivity and Q × f were dependent on the sintering temperature and the amounts of BaCu(B2O5). Addition of 3.0 wt% BaCu(B2O5) in ZnNb2O6–1.8TiO2 ceramics sintered at 950°C showed excellent dielectric properties of εr = 40.9, Q × f = 12,200 GHz (f = 5.015 GHz) and τf = +0.3 ppm/°C.  相似文献   

12.
选用B2O3-CuO(BC)低熔点复合氧化物作为烧结助剂,采用固相法制备(Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3(CSLST)陶瓷,研究了不同含量的BC对CSLST陶瓷的晶相组成、烧结性能及微波介电性能的影响.研究结果表明:随BC添加量的增多,CSLST陶瓷的烧结温度降低,陶瓷的微波介电常数εr和谐振频率温度系数(Τ)f下降,品质因素Qf明显降低.当BC添加量为5wt%时,在1000℃保温5h可烧结,此时陶瓷具有较佳的微波介电性能:εr=80.4,Q×f=1380 GHz,(Τ)f=- 32.89×10-6/℃.  相似文献   

13.
Ultralow‐temperature sinterable Ba3V4O13 ceramics have been prepared through solid‐state ceramic route. Structural properties of the ceramic material are studied using powder X‐ray diffraction. Ba3V4O13 ceramic has monoclinic structure and the existence of [V4O13]6? polyhedra is confirmed through Laser Raman studies. The sample sintered at 600°C for 1 h shows dense microstructure with microwave dielectric properties of εr = 9.6, Q × f = 56 100 GHz, and τf = ?42 ppm/°C. The ceramics under study show good chemical compatibility with aluminum during cofiring.  相似文献   

14.
Preparation and microwave dielectric properties of B2O3‐doped CaLa4Ti4O15 ceramics have been investigated. X‐ray diffraction data show that CaLa4Ti4O15 ceramic has a trigonal structure coupled with a second phase of CaLa4Ti5O17. The CaLa4Ti4O15 ceramic with addition of 0.5 wt% B2O3, sintered at 1220°C for 4 h, exhibits microwave dielectric properties with a dielectric constant of 45.8, Q × f value of 24,000 GHz, and temperature coefficient of resonant frequency (τf) of ?19 ppm/°C. B2O3‐doped CaLa4Ti4O15 ceramics, which have better sintering behavior (decrease in sintering temperature ~ 330°C) and dielectric properties than pure CaLa4Ti4O15 ceramics, are candidates for applications in microwave devices.  相似文献   

15.
采用固相反应制备了(1-x)Ba3(VO4)2-xLi2MoO4微波介质陶瓷,研究了掺入不同质量比的Li2MoO4对Ba3(VO4)2的微观结构和微波介质性能影响,X线衍射(XRD)测试结果表明,Ba3(VO4)2和Li2MoO4二者兼容性良好,无第二相产生。添加具有低熔点及相反(负)频率温度系数的Li2 MoO4能有效降低Ba3( VO4)2的烧结温度,并随着添加剂Li2 MoO4的增加,此复合陶瓷的相对体密度、介电常数εr 和品质因数Q ×f呈现出先增加随后又降低的趋势,而谐振频率里面温度系数τf逐渐降低。当烧结温度为660℃且添加量30wt%Li2 MoO4的复合微波介质陶瓷获得了最佳的微波介电性能:εr =11.99, Q ×f=39700 GHz,τf =-24 ppm/℃。  相似文献   

16.
xSrTiO3–(1?x)LaAlO3 ceramics with ZnO–B2O3 sintering aid were prepared by solid‐state reaction method leading to a significant decrease in sintering temperature from 1550°C to 1050°C. The structure, microwave dielectric properties, and low‐temperature sintering behavior were systematically investigated. The results revealed the relationships among ionic size, ionic polarizability and cell volume. With increasing additive, chemical ordering of B‐site cations was indicated with selected area electron diffraction (SAED) patterns, HRTEM images and Raman spectrum, which contributed to the greatly enhanced microwave dielectric properties. Particularly, the 0.7Sr0.85 Mg0.15TiO3–0.3LaAlO3 ceramics modified with 10 wt % ZnO‐B2O3 can further decrease the sintering temperature down to 950°C without deteriorating its performance. Thermal tests implied ceramics featured good chemical compatibility with Cu/Ag electrode. Thus, they can be cofired with internal Cu/Ag electrodes in special patterns to fulfill different electrical functions for LTCC (low‐temperature cofired ceramic) application.  相似文献   

17.
The CaMoO4xY2O3xLi2O ceramics were prepared by the solid‐state reaction method. The sintering behavior, phase evolution, microstructure, and microwave dielectric properties were investigated. CaMoO4 solid solution was obtained when x = 0.030, and two‐phase system including tetragonal CaMoO4 phase and cubic Y2O3 phase formed when 0.066 ≤ x ≤ 1.417. A temperature stable CaMoO4‐based microwave dielectric ceramic with ultralow sintering temperature (775°C) was obtained in the CaMoO4xY2O3xLi2O system when x = 0.306, which showed good microwave dielectric properties with a low permittivity of 9.5, a high Qf value of 63 240 GHz, and a near‐zero temperature coefficient of resonant frequency of +7.2 ppm/°C.  相似文献   

18.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

19.
Low‐fired cobalt niobate (CoNb2O6) microwave dielectric ceramics were prepared through a developed sol–gel process using Nb2O5·nH2O as starting source. A metal‐dioxo‐bridged complex precursor was described on the basis of FT‐IR spectrum. The crystalline phases of calcined powders were characterized by X‐ray diffraction. Nanosized CoNb2O6 particles with orthorhombic α‐PbO2‐type structure were obtained above 750°C. There was no subsequent phase change upon sintering, and all compounds sintered to at least 94% of theoretical density. At 1000°C/4 h, CoNb2O6 ceramics exhibited εr ~ 21.9, Q × f ~ 66 140 GHz (at 8.9 GHz) and τf ~ ?39.7 ppm/°C, having a good potential for low‐temperature cofired ceramic applications.  相似文献   

20.
A homogeneous Bi12TiO20 phase was developed in a specimen that was calcined at 700°C without the formation of a secondary phase. A small amount of the Bi12TiO20 phase melted during sintering and assisted the densification of the specimen. The Bi2O3 and Bi8TiO14 secondary phases were found in all specimens. All the specimens that were sintered at temperatures ≥775°C exhibited high relative densities above 98% of the theoretical density. The Q × f value of the Bi12TiO20 ceramics was influenced by the grain size. The Bi12TiO20 ceramics sintered at 800°C for 5 h showed promising microwave dielectric properties of εr = 41, Q × f = 10 400 GHz, and τf = ?10.8 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号