首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed laser deposition was used to prepare amorphous thin films from (GeSe2)100?x(Sb2Se3)x system (x = 0, 5, 10, 20, 30, 40, 50, and 60). From a wide variety of chalcogenide glass‐forming systems, Ge–Sb–Se one, especially in thin films form, already proved to offer a great potential for photonic devices such as chemical sensors. This system has a large glass‐forming region which gives the possibility to adjust the chemical composition of the glasses according to required physical characteristics. The chemical composition of fabricated thin films was analyzed via X‐ray photoelectron spectroscopy (XPS) and compared to energy dispersive spectroscopy (EDS) data. The results of both techniques agree well: a small deficiency in chalcogen element and an excess of antimony was found. The structure of as‐deposited thin films has been investigated by XPS. The presence of the two main structural units, [GeSe4] and [SbSe3] proposed by Raman scattering spectroscopy data analysis, was confirmed by XPS. Moreover, XPS core level spectra analysis revealed the presence of M–M bonds (M = Ge, Sb) in (Ge,Sb)–Ge–(Se)3 and (Ge,Sb)–Sb–(Se)2 entities that could correspond to Ge‐based tetrahedra and Sb‐based pyramids where one of its Se atoms at corners is substituted by Ge or Sb ones. The content of depicted M–M bonds tends to increase with introduction of antimony in the amorphous network of as‐deposited thin films from x = 0 to x = 40 and then it decreases. XPS analysis of as‐deposited thin films shows also the presence of the (Ge,Sb)–Se–(Ge,Sb) and Se–Se–(Ge,Sb) entities.  相似文献   

2.
AgI-based Ge–Sb–S, Ga–Sb–S, and Ge–Ga–Sb–S chalcogenide glasses were designed and prepared by melt-quenching, thereafter their thermal properties and conductive performance were comparatively investigated on the basis of their composition-induced network structures. Glass transition in each sample was examined by DSC measurements. Results showed that the samples containing Ge had a higher thermal stability than the Ga–Sb–S–AgI sample, and the Ge–Sb–S–AgI sample obtained had the highest conductivity ion. Raman spectrum analysis was performed, and the results indicated that the [GeS4-xIx] structural units and [SbS3−xIx] pyramids in the matrix produced effective ion transport channel for dissolved conductive Ag+ ions. In the matrix containing Ga, the [Ga(Ge)S4-xIx] structure was consumed by part of [S3Ga–GaS3] ethane-like units, which had no contribution to the ion transition framework. The study provided the directions for composition and structure configuration control in effective conductive chalcogenide glasses.  相似文献   

3.
We explored the structure and physical properties of Ge15Sb20Se65‐xSx (with x = 0, 16.25, 32.5, 48.75, and 65) glasses in order to screen the best compositions for the applications in photonics, since the laser damage thresholds in Se‐based glasses are too low although their optical nonlinearities are high. We found that, linear and nonlinear refractive index of the glasses decreased, but glass transition temperature Tg, optical bandgap Eg and the laser damage threshold increased with increasing S content. We further employed Raman scattering and high‐resolution X‐ray photoelectron spectra to probe the structure of the glasses. Through the analysis of the evolution of the different structural units in the glasses, it was concluded that, the heteropolar bonds (Ge–Se/S, Sb–Se/S) were dominated in these glasses. With the increase in chalcogen Se/S ratio, the number of the Se‐related chemical bonds (Ge–Se, Sb–Se and Se–Se) increased and that of S‐related chemical bond (Ge–S, Sb–S and S–S) decreased gradually, and Ge was prior to bond with S rather than Se. The elemental substitution thus had negligible effect on the glass structure. The change of the physical properties was mainly due to the difference of the strength of the chemical bonds between S–Ge(Sb) and Se–Ge(Sb).  相似文献   

4.
Diagram of the phase transformation behavior of GeS2–Ga2S3–CsI glasses is realized in this article and the structure‐property dependence of the chalcogenide glasses is elucidated using differential scanning calorimetry and Raman spectroscopy. We observe the compositional threshold of crystallization behavior locates at = 6–7 mol% in (100?x)(0.8GeS2–0.2Ga2S3)–xCsI glasses, which is confirmed by the thermodynamic studies. Structural motifs are derived from the Raman result that [Ge(Ga)S4], [S2GeI2], [S3GaI], and [S3Ga–GaS3] were identified to exist in this glass network. Combined with the information of structural threshold, local arrangement of these structural motifs is proposed to explain all the experimental observations, which provides a new way to understand the correlation between crystallization behavior and network structure in chalcogenide glasses.  相似文献   

5.
We prepared chemically stoichiometric, S‐poor and S‐rich Ge–Ga–S glasses and annealed them at a temperature that was 20°C higher than its respective glass transition temperature. We aimed at tuning the formation of the different crystals in chalcogenide glass‐ceramics. Through systematic characterization of the structure using X‐ray diffraction and Raman scattering spectra, we found that, GeS2 and GeS crystals only can be created in S‐rich and S‐poor glass‐ceramics, respectively, while all GeS, Ga2S3, and GeS2 crystals exist in chemically stoichiometric glass‐ceramics. Moreover, we demonstrated the homogeneous distribution of the crystals can be formed in the S‐rich glass‐ceramics from the surface to the interior via composition designing. The present approach blazes a new path to control the growth of the different crystals in chalcogenide glass‐ceramics.  相似文献   

6.
For fiber‐optic mid‐infrared bio‐ and chemical‐sensing, Ge–Sb–Se glass optical fibers are more attractive than Ge–As–Se because of: (i) lowered toxicity and (ii) lower phonon energy and hence transmission to longer wavelengths, with potential to reach the spectral “fingerprint region” for molecular sensing. There is little previous work on Ge–Sb–Se fibers. Here, fibers are fabricated from two glass compositions in the GexSb10Se90?x atomic (at.) % series. Both glass compositions are of similar mean‐coordination‐number, lying in the overconstrained region, yet of different chemical composition: stoichiometric Ge25Sb10Se65 at. % and non‐stoichiometric Ge20Sb10Se70 at. %. Thermal analysis on bulk glasses has previously shown that the former exhibited the maximum glass stability of the series. However, during fiber‐drawing of Ge25Sb10Se65 at. %, the preform tip is found to undergo surface‐devitrification to monoclinic GeSe2 alone, the primary phase, no matter if the preform is an annealed, as‐melted rod or annealed, extruded rod. The heating rate of the preform‐tip to the fiber‐drawing temperature is estimated to be up to ~100°C/min to ~490°C. Lower heating rates of 10°C/min using thermal analysis, in contrast, encourage crystallization of both Sb2Se3 and GeSe2. The non‐stoichiometric: Ge20Sb10Se70 at. % composition drew successfully to low optical loss fiber, no matter whether the preform was an annealed, as‐melted rod or annealed, extruded rod.  相似文献   

7.
The structure of (GeTe4)1?x(AgI)x (x = 0.15 and 0.25) glasses has been investigated by X‐ray and neutron diffraction as well as extended X‐ray absorption spectroscopy (EXAFS) and Raman spectroscopy. Large‐scale structural models have been obtained by fitting simultaneously the experimental datasets in the framework of the reverse Monte Carlo simulation technique (RMC). Short‐range order parameters have been calculated and compared with that of GeTe4. Doping with AgI affects the structure of the host GeTe4 matrix in two ways. First, while Te is essentially twofold coordinated in GeTe4, its coordination number is as high as ~2.9 ± 0.3 for x = 0.25. The change is mainly due to the increased fraction of Te–Te bonds. Second, Ge atoms remain fourfold coordinated but the tetrahedral symmetry is distorted due to the elongation of some Ge–Te bonds. The incorporation of AgI in the GeTe4‐based host covalent matrix and the Te coordination increase explains the enhanced thermal stability of (GeTe4)1?x(AgI)x in the supercooled liquid‐state hindering the crystallization of Te found in case of GeTe4 glass.  相似文献   

8.
A phase diagram is constructed for the quasi‐binary Li4GeS4–Li3PS4 system containing the lithium superionic conductor Li10GeP2S12 (LGPS), having an LGPS‐type structure, and the β‐Li3PS4‐type phase, having a thio‐LISICON structure. The LGPS and thio‐LISICON intermediate compounds are found to exhibit solid solution ranges and show incongruent melting at 650°C and 560°C, respectively. The end‐member Li4GeS4 has a compositional range of 0 < < 0.3 in [(1?k) Li4GeS4 + k Li3PS4], while the other end‐member γ‐Li3PS4 has no solid solution range. The crystal structures appearing in the binary systems are the α‐, β‐, and γ‐type Li3PS4 structures and the LGPS‐type structure, and these are formed by PS4 tetrahedra with different arrangements in each structure. The phase and structural relationships between the compounds appearing in the Li4GeS4–Li3PS4 system are thus clarified.  相似文献   

9.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

10.
The subsolidus phase relations of the BaO–Y2O3–MnO2 system have been investigated in air. There are eight binary compounds, a new ternary compound and 11 three‐phase regions in this system. The ternary compound with the BaO:YO1.5:MnO2 molar ratio of 8:2:5 was indexed by a rhombohedral lattice with = 5.7929 (6) and = 28.586 (4) Å. The synthesized compounds were determined to be stoichiometric except for the Ba1?xYxMnO3 phase (x ≤ 0.01).  相似文献   

11.
Na‐ion conducting Na1+x[SnxGe2?x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) glass samples with NASICON‐type phase were synthesized by the melt quenching method and glass‐ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. XRD traces exhibit formation of most stable crystalline phase NaGe2(PO4)3 (ICSD‐164019) with trigonal structure. Structural illustration of sodium germanium phosphate [NaGe2(PO4)3] displays that each germanium is surrounded by 6 oxygen atom showing octahedral symmetry (GeO6) and phosphorous with 4 oxygen atoms showing tetrahedral symmetry (PO4). The highest bulk Na+ ion conductivities and lowest activation energy for conduction were achieved to be 8.39 × 10?05 S/cm and 0.52 eV for the optimum substitution levels (x = 0.5 mol%, Na1.5[Sn0.5Ge1.5(PO4)3]) of tetrahedral Ge4+ ions by Sn4+ on Na–Ge–P network. CV studies of the best conducting Na1.5[Sn0.5Ge1.5(PO4)3] glass‐ceramic electrolyte possesses a wide electrochemical window of 6 V. The structural and EIS studies of these glass‐ceramic electrolyte samples were monitored in light of the substitution of Ge by its larger homologue Sn.  相似文献   

12.
In this study, the spinel solid solution ceramics (1?x)LiFe5O8xLi2ZnTi3O8 (0 ≤ x ≤ 1) were prepared via the solid‐state reaction method. The phase evolution, sintering behaviors, microstructures, magneto‐dielectric properties, and microwave dielectric properties were systematically investigated. The XRD and SEM analysis indicated that the LiFe5O8 phase and the Li2ZnTi3O8 phase were almost fully soluble in each other at any proportion. Meanwhile, the evidence of ionic substitution has been directly observed at the atomic scale by means of scanning transmission electron microscopy, which is further confirmed by the Raman spectroscopy. Evidence shows that the magnetic and dielectric properties are quite sensitive to the compositions. The optimal results with remarkable magneto‐dielectric properties of μ′ = 38.2, tanδμ = 0.25, ε′ = 19.6, tanδε = 8 × 10?3 at 1 MHz, and ε′ = 19.1, Q × f = 10 400 GHz at about 7 GHz have been obtained in 0.25LiFe5O8–0.75Li2ZnTi3O8 sample. The design of complex spinel solid solution can generate novel magneto‐dielectric single‐phase ceramics combining both high permeability and good dielectric properties, which provides a way in developing multifunctional materials for applications in electronic devices.  相似文献   

13.
The Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α‐PrO2–x and bixbyite σ‐Pr3O5 ± x solid solutions while the two‐sublattice liquid model was used to describe the binary melt. The series of phases between Pr2O3 and PrO2 were taken to be stoichiometric. Equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self‐consistent representation of the thermodynamic behavior of the Pr–O system from 298 K to melting.  相似文献   

14.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

15.
Three composition groups in the BaTiO3–CaTiO3–BaHfO3 ternary system, (1 ? x)Ba(HfyTi1?y)O3x(Ba1?zCaz)TiO3 (abbreviated as BHyT–xBCzT with = 0–1.0, = 0.16, = 0.20; = 0–1.0, = 0.16, = 0.30; = 0–1.0, = 0.20, = 0.30, respectively), have been designed for investigating the variation of the intermediate O‐phase region and its effect on the electrical properties. The temperature‐composition phase diagram of each group has been proposed based on the X‐ray diffraction patterns and the temperature‐dependent dielectric behaviors. The enhanced piezoelectric properties are achieved in the O–T phase boundary compositions of the three groups, which are BH0.16T–0.58BC0.20T, BH0.16T–0.48BC0.30T and BH0.20T–0.53BC0.30T, respectively. Piezoelectric coefficient d33 of 448 pC/N is obtained in BH0.20T–0.53BC0.30T, which is higher than those of the other two phase boundary compositions. The O‐phase zone in BH0.20T–xBC0.30T is narrower than those in the BH0.16T–xBC0.20T and BH0.16T–xBC0.30T. In spite of its small O‐phase volume occupancy, the O‐phase plays a key role in the properties of the system. Our work confirms that the enhancement in piezoelectric properties is not only related to the O–T phase boundary near room temperature (RT), but also related to the shift of TR‐O toward RT. In addition, a quantitative relation between the phase boundary composition and atomic mole ratio of Hf to Ca (Rm) is proposed, which the Rm value corresponding to the phase boundary is about 0.58. The results clearly demonstrate that in this system high piezoelectric properties are achieved by tuning the specific Rm value. Such a work may provide new clues for designing lead‐free piezoelectric materials with enhanced piezoelectric property.  相似文献   

16.
A systematic investigation of the optical and structural properties of chalcogenide glasses in Ge–Sn–Se ternary system is presented. We have found a threshold behavior of optical property, namely, existence of transitional composition of the Ge–Sn–Se glasses, with progressive replacement of Se by Sn. Calculation of mean coordination number indicates that the transition‐like feature of optical property is associated with the evolution of chemical ordering of the Ge–Sn–Se network. Analysis of Raman spectra of the glasses explains that the interaction between Se–Se bonds, Sn(Se1/2)4 tetrahedra, and Sn–Sn homopolar bonds is the origination of such optical phenomenon.  相似文献   

17.
A series of lanthanide oxyapatites, neodymium silicates (Nd9.33?xM3x/2(SiO4)6O2; x = 0.0 and 2.0 and M = Ca, Sr, and Ba), and lanthanum germanate (La10(GeO4)6O3) were prepared by a variety of heat treatments and characterized. High‐temperature oxide melt solution calorimetry in molten 2PbO–B2O3 solvent at 1078 K was performed to determine their enthalpies of formation from constituent oxides at room temperature. The energetics of these materials is discussed in terms of the effects of doping on two crystallographic sites, the lanthanide and tetrahedral sites. The enthalpy of formation from oxides becomes less exothermic by substituting La with Nd throughout the whole series, in both doped and undoped compositions, reflecting the smaller radius and lower basicity of Nd compared with La. Cation stoichiometric lanthanum germanate apatite (La10(GeO4)6O3) shows a more endothermic enthalpy of formation than the corresponding silicate, reflecting the larger radius and lower acidity of Ge than Si.  相似文献   

18.
Aerodynamic levitation and CO2 laser melting have been used to synthesize the yttrium aluminosilicate glasses zY2O3yAl2O3xSiO2 with z/y = 3/5 corresponding to the YAG (Y3Al5O12) composition and x between ~5 and ~45 mol%. The low‐ and high‐density (LDA inclusion and HDA matrix) polyamorphic phases in glasses with less than ~14 mol% SiO2 were identified with backscattering electron imaging. Polarized and depolarized Raman spectra show the formation of various Qn SiO4 species whose relative populations change smoothly as the SiO2 content is altered. The AlOs (s = 4–6) and YOz (z = 6–9) polyhedra formed in the YAG glass are preserved upon silica additions while the terminal oxygens of the Q2AlO4 tetrahedra are gradually bridged to the Qn‐SiO4 species. The low‐frequency Boson Peak overlaps with the vibrational spectrum and its maximum is redshifted with increasing silica content. Micro‐Raman spectra measured for the LDA and HDA amorphous phases are found to be similar to the spectra of the bulk glass indicating common structural characteristics. The stability of the LDA phase against crystallization appears to be lower than that of the HDA phase. The crystallinity on certain inclusions consisted of YAG microcrystals and a new unidentified microcrystalline phase within Y4Al2(1?x)Si2xO(9+x) solid solution.  相似文献   

19.
Lead‐free ferroelectric ceramics (1–x)(Ba0.7Ca0.3)TiO3xBa(Zr0.2Ti0.8)O3 (BCTZ100x) with x = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 were evaluated for their pyroelectric energy harvesting performance, using the Olsen cycle. As the composition ratio x increased, the crystal phase changed to tetragonal, orthorhombic, rhombohedral, and cubic; the phase boundaries crossed each other in the vicinity of BCTZ70. The crossover phase transition behavior between first‐order and diffuse phase transition changed to only the diffusion phase transition with increasing x. A pinching effect occurred because an increase in dielectric constant was also observed. Energy densities ND of 229 mJ/cm3 and 256 mJ/cm3 for BCTZ50 and BCTZ80 were obtained, respectively, in temperature of 30°C‐100°C and an electric field of 0‐30 kV/cm. These ND values are over two times higher than that of soft–Pb(Ti,Zr)O3 (PZT), which exhibits piezoelectric performance equivalent to BCTZ50 at room temperature. Compared with soft–PZT, BCTZ50 and BCTZ80 exhibited larger ND values owing to their lower Curie temperatures (TC ~ 50°C‐110°C). We conclude that low–TC ferroelectrics are useful for pyroelectric energy conversion based on the Olsen cycle even if they are unsuitable for piezoelectric applications at high temperatures.  相似文献   

20.
In this study, we report the synthesis of SrCo1?xRuxO3?δ nominal compositions, where x = 0.0‐1.0, using solid‐state reaction technique. XRD analysis confirms the structure of x = 0 sample as hexagonal Sr6Co5O15. As the Co ions are substituted by Ru, a two‐phase structure (hexagonal R32 and orthorhombic Pbnm) emerges up to x ≤ 0.5. As the Ru content is increased further, the hexagonal R32 phase disappears completely and an orthorhombic Pbnm phase becomes the main phase. SEM images show that grain size of the samples decreases with increasing Ru content. Temperature‐dependent electrical conductivity studies indicate upon Ru substitution in the nominal SrCo1?xRuxO3?δ compounds, resistivity decreases due to appearance of metallic SrRuO3 phase. The cyclic voltammogram (CV) of the samples show capacitive properties upon Ru substitution. The cycle measurements of the capacitors yield promising results for potential supercapacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号