首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aiming to manufacture low‐cost silicon nitride components, a low‐cost β powder was chosen as a raw powder and low‐temperature sintering at 1550–1600°C under atmospheric pressure nitrogen was carried out. The silicon nitride from β powder with 5 wt% Y2O3 and 5 wt% MgAl2O4 additives and sintered at 1600°C for 8 h was successfully densified, and it exhibited moderate strength and toughness of 553 MPa ± 22 and 3.5 MPa m1/2, respectively. The results indicate that the low‐temperature sintering of the low‐cost β powder has a potential to reduce cost of components.  相似文献   

2.
前驱物法低温合成六方氮化硼   总被引:2,自引:0,他引:2  
本文以三聚氰胺和硼酸为原料,先采用湿化学法合成棒状前驱物,然后将其在空气气氛中高温培烧制得六方氮化硼.实验考察了反应原料配比,反应物浓度,高温培烧的时间及温度对产物的影响.采用IR、化学分析、XRD、粒度分析和SEM等方法对前驱物及产物进行了表征,确定了前驱物及产物的组成、物相、粒度分布及形貌.研究结果表明:合成前驱物的适宜原料配比是C3N6H6∶H3BO3=1∶2,浓度为0.4 mol/L,合成的前驱物是分子式为C3N6H6·2H3BO3的棒状超分子加合物;在温度950℃,空气气氛中培烧6h能得到晶型良好、平均粒径为15 μm的六方氮化硼粉体.  相似文献   

3.
六方氮化硼(h-BN)涂层是一种性能优异的功能陶瓷材料,介绍了化学气相沉积( CVD)六方氮化硼涂层的制备工艺,综述了h-BN涂层的优异性能和应用现状,并对其研究发展趋势进行了展望.认为先驱体性能存在缺陷、沉积机理复杂、工艺可控性差、生产成本高是目前CVD制备h-BN涂层存在的主要工艺问题,指出今后还需在新型先驱体的研发和使用、沉积机理的深入探究、工艺优化和放大等方面开展深入研究,以实现h-BN涂层的大规模工业化生产和应用.  相似文献   

4.
Calcium hexaboride (CaB6) powder was synthesized by carbothermal reduction using a low‐temperature synthesis method for boron carbide (B4C) powder. A B4C precursor consisting of boron oxide (B2O3) and carbon components was prepared from a condensed boric acid (H3BO3)‐poly(vinyl alcohol) (PVA) product by thermal decomposition in air, which was then mixed with calcium carbonate (CaCO3) powder. CaB6 was formed via the transient formation of calcium borate (Ca3B2O6) and B4C, which were in close contact owing to the finely dispersed B2O3/carbon structure of the B4C precursor. CaB6 powder with fine particles was synthesized by heat treatment at 1400°C for 10 h in an Ar flow.  相似文献   

5.
The dc conductivity of hexagonal boron nitride (BN) and BN-containing composites was measured as a function of temperature up to 2400°C. The results confirm that at high temperatures BN is an intrinsic semiconductor with an energy gap of 0.99 ± 0.06 aJ (6.2 ± 0.4 eV) at T = 0 K. Extrapolated values for the resistivity of BN in the range 2600° to 3000°C are used to analyze the absorption, reflectivity, and transmissivity of a BN window when subjected to microwave radiation under atmospheric reentry conditions. It appears that the transmissivity is of the order of 1 to 10% at these temperatures due mainly to the high conductivity in a very thin, very hot surface layer. The transmissivity can be improved by using a composite made of boron nitride and silica.  相似文献   

6.
Two chemically different phases, hexagonal BN and AIN, were simultaneously produced by chemical vapor deposition (CVD) using an impinging jet reactor and the BCl3─AlCl3─NH3─Ar reagent system. The microstructure of the BN + AIN composite coatings was strongly dependent on temperature, pressure, and BCl3 and AlCl3 concentrations. The growth characteristics of BN and AIN in the codeposition system were similar to those expected from the single-phase deposition processes (i.e., BN-CVD and AIN-CVD), except the growth of AIN whiskers was accentuated, and competition between BN and AIN deposition in the composites was suspected to be the cause of less-crystalline deposits. In both BN + AIN-CVD and AIN-CVD, the growth of AIN whiskers became more apparent with increasing pressure or temperature. The codeposition behavior observed experimentally was compared with thermodynamic predictions.  相似文献   

7.
With the rapid development of ultra large scale integrated circuits, low stress, low thermal expansion, low dielectric constant, and low temperature curable (<250 °C) polyimides (PIs) with excellent mechanical, thermal properties are required. Unfortunately, high curing temperatures above 300 °C and limited dielectric property still remain to be solved. Herein, a new type of aminopropyl isobutyl polysilsesquioxane (POSS) with single vertex activity is introduced by in situ polymerization resulting in the PI‐POSS nanocomposites which exhibit a low dielectric constant (κ ≤ 2.6). Furthermore, low‐temperature curing at 200 °C (99.4% imidization) under the catalysis of quinoline is also achieved. The as‐prepared PI‐POSS nanocomposites also show excellent mechanical properties of which the tensile strength can reach up to 148 MPa and the elongation at break achieves 98%. Moreover, the temperature of weight loss 5% is as high as 550 °C and the glass transition temperature can also reach 349 °C. The as‐prepared PI‐POSS nanocomposites prove excellent electrical performance and mechanical properties, showing a huge market prospect of 5G chip packaging and millimeter wave antenna in the future.  相似文献   

8.
The quasi-three-dimensional effect induced by functional groups (FGo) and the in-plane stress and structural deformation induced by grain boundaries (GBs) may produce more novel physical effects. These physical effects are particularly significant in high-temperature environments and are different from the behavior in bulk materials, so its physical mechanism is worth exploring. Considering the external field (strain and temperature field), the internal field (FGo and GBs) and the effect of distance between FGs and GBs on the bonding energy, configuration transition, and stress distribution of graphene/h-BN with FGo and GBs (GrO-BN-GBs) in the interface region were studied by molecular dynamics (MD). The results show that the regions linked by hydroxyl + epoxy groups gradually change from honeycomb to diamond-like structures as a result of a hybridization transition from sp2 to sp3. The built-in distortion stress field generated by the coupling effect of temperature and tension loading induces the local geometric buckling of two-dimensional materials, according the von Mises stresses and deflection theory. In addition, the internal (FGo and GBs) and external field (strain and temperature field) have a negative chain reaction on the mechanical properties of GrO-BN-GBs, and the negative chain reaction increases gradually with the increase in the distance between FGo and GBs. These physical effects are particularly obvious in high-temperature environments, and the behavior of physical effects in two-dimensional materials is different from that in bulk materials, so its physical mechanism is worth exploring.  相似文献   

9.
A phase diagram‐assisted powder processing approach is shown to produce low‐oxygen (0.06 wt%O) ZrB2 ceramics using minimal B4C additions (0.25 wt%) and spark plasma sintering. Scanning electron microscopy and scanning transmission electron microscopy with elemental spectroscopy are used to identify “trash collector” oxides. These “trash collector” oxides are composed of manufacturer metal powder impurities that form discreet oxide particles due to the absence of standard Zr–B oxides found in high oxygen samples. A preliminary Zr–B–C–O quaternary thermodynamic database developed as a part of this work was used to calculate the ZrO2–B4C pseudobinary phase diagram and ZrB2–ZrO2–B4C pseudoternary phase diagrams. We use the calculated equilibrium phase diagrams to characterize the oxide impurities and show the direct reaction path that allows for the formation of ZrB2 with an oxygen content of 0.06 wt%, fine grains (3.3 μm) and superior mechanical properties (flexural strength of 660 MPa).  相似文献   

10.
Hexagonal boron nitride powder was hot pressed in an environment of metallic copper. When compared with a copper-free system, the sintered body exposed to the copper was composed of substantially thicker grains having an unusual arrangement, consisting of preferred alignment of (0001) basal planes parallel to the pressure axis. The character of the orientation of the boron nitride grains substantially influenced the mechanical strength of the ceramics. The difference in the orientation of the grains is explained by the interaction between copper atoms and boron nitride crystals selectively occurring on the (0001) basal planes of the latter.  相似文献   

11.
12.
本文采用微米级六方氮化硼(h-BN)对ABS树脂进行共混改性。通过FT-IR和SEM测试表征h-BN改性ABS材料物性及微观结构,并考察了h-BN对ABS树脂力学、导热和表面摩擦性能的影响。研究发现,随着h-BN增加,改性ABS材料韧性下降,而材料刚性提升。添加4wt%h-BN改性ABS悬臂梁缺口冲击强度为12.2 k J/m2,弯曲模量高达2800 MPa,导热系数为0.312 W/m K,静摩擦系数为0.30,滑动摩擦系数为0.25。因此,h-BN改性ABS材料具有较强的力学强度、亮白的外观、良好的导热和较低的摩擦系数等性能,更适合用于制作家电和电子电器等消费品的外观制件。  相似文献   

13.
Aluminum nitride (AlN) was synthesized by carbothermal reduction and nitridation method from a mixture of various transition alumina powders and carbon black using 2.45 GHz microwave irradiation in N2 atmosphere. We achieved the synthesis of AlN at 1300–1400°C using 2.45 GHz microwave irradiation for 60 min. Our results suggest that θ‐Al2O3 is more easily nitrided than γ‐, δ‐, and α‐Al2O3. On the other hand, nitridation ratio of samples synthesized in a conventional furnace under nitrogen atmosphere were zero or very low. These results show that 2.45 GHz microwave irradiation enhanced the reduction and nitridation reaction of alumina.  相似文献   

14.
For the first time we have demonstrated the densification of high‐purity nanostructured (davg ≈ 60 nm) tungsten carbide by High Pressure Spark Plasma Sintering (HPSPS) in the unusually low temperature range of 1200°C–1400°C. The high‐pressure sintering (i.e., 300 MPa) produced dense material at a temperature as low as 1400°C. In comparison with more conventional sintering techniques, such as SPS (80 MPa) or hot isostatic pressing, HPSPS lowered the temperature required for full densification by 400°C–500°C. High Pressure Spark Plasma Sintering, even in absence of any sintering aid or grain growth inhibitor, retained a very fine microstructure resulting in a significant improvement in both hardness (2721 HV10) and fracture toughness (7.2 MPa m1/2).  相似文献   

15.
Pb9.85(VO4)6I1.7, a potential waste form for long‐lived I‐129 immobilization, experiences phase decomposition and thus iodine loss at an elevated temperature above 400°C, presenting a significant challenge for effective management of radioactive iodine. In this work, we report low‐temperature consolidation of dense iodoapatite pellets with above 95% theoretical density by spark plasma sintering (SPS) at temperatures as low as 350°C for 20 min without iodine loss. Microstructure analysis indicates a nanocrystalline ceramic with an average grain size less than 100 nm. Grain growth dominates the sintered microstructure at higher temperatures and longer durations. The dense nanoceramics have significantly‐improved fracture toughness as compared with bulk coarsened grain structures. The effects of sintering temperatures (350°C, 400°C, 500°C, and 700°C) and durations (0–20 min) on microstructure, density, fracture morphology, and mechanical properties including Young's modulus and hardness of bulk samples were investigated. Low temperature densified iodoapatites suggest immense potential of SPS as an advanced materials fabrication technology for the development of waste forms for immobilization of volatile radionuclides including radioactive iodine.  相似文献   

16.
本研究用一种操作简单、适合规模化、低成本的方法制备六方氮化硼粉末.研究了硼、氮元素的物质的量比值,烧成制度,助熔剂的添加量对产物物相成份和颗粒形貌的影响,并对酸洗和碱洗对产物中杂质的去除效果进行了比较.用X-射线衍射仪(XRD)、扫描电镜(SEM)对制备的产物样品进行了分析表征,发现用该工艺制得的六方氮化硼纯度可达95.6%,去杂后纯度可达99%以上,晶粒直径约为0.2~0.5 μm,厚度在60~70 nm,晶粒尺寸比较均匀.  相似文献   

17.
本文研究了B2O3和BN粉料的热行为,分析了未处理的BN陶瓷的物相特性,采用除杂处理后的BN原料,热压烧结制备了高纯BN陶瓷材料,分析了影响陶瓷材料弯曲强度和致密性的主要因素,探讨了BN晶粒的定向性与热压工艺之间的关系.  相似文献   

18.
Hexagonal boron nitride nanoplatelets (BNNP) significantly enhance the mechanical and thermal properties of high‐density polyethylene. In order to ensure superior dispersibility of BNNP, two different techniques, colloidal solution, and solvent blending, are used for fabricating nanocomposites. Compared to solvent blending, the colloidal solution‐based fabrication technique has superior dispersion capabilities for nanofillers in the PE matrix, which helps in improving the thermal stability and crystallinity in synthesized nanocomposites. A significant increase in the rate of crystallization of polyethylene (PE) is reported at 1% weight fraction of BNNP, which further increases with the increase in weight percentage of BNNP. BNNP acts as a new source of nucleating sites for crystallization in PE that also reduces the size of secondary structures spherulites. Enhanced tensile strength and Young’s modulus of BNNP/PE nanocomposites are reported with the increase in weight contribution of BNNP in the range of 1% to 5%.  相似文献   

19.
In this paper, we present a new cubic boron nitride synthesis method via introduction of highly reactive nitrogen and boron atoms generated from chemical reactions as the raw materials of cubic boron nitride, so the system pressure and temperature are reduced significantly compared with the traditional phase transformation method at super high-pressure and high-temperature, and then the production cost of cubic boron nitride can be reduced greatly and the equipment service life can be extended significantly. Experiments have shown that by this method the cBN can be synthesized with high yield at pressures as low as 2.5 GPa and temperatures as low as 450°C. Compared with the conventional phase transformation method, the pressure decreases by about 50% and the temperature decreases by about 64%. Analyses have shown that the crystal structure of the cBN synthesized is perfect and the impurity content is extremely low.  相似文献   

20.
A chemical process for fabrication of Si3N4/BN nanocomposite was devised to improve the mechanical properties. Si3N4/BN nanocomposites containing 0 to 30 vol% hexagonal BN ( h -BN) were successfully fabricated by hot-pressing α-Si3N4 powders, on which turbostratic BN ( t -BN) with a disordered layer structure was partly coated. The t -BN coating on α-Si3N4 particles was prepared by reducing and heating α-Si3N4 particles covered with a mixture of boric acid and urea. TEM observations of this nanocomposite revealed that the nanosized hexagonal BN ( h -BN) particles were homogeneously dispersed within Si3N4 grains as well as at grain boundaries. As expected from the rules of composites, Young's modulus of both micro- and nanocomposites decreased with an increase in h -BN content, while the fracture strength of the nanocomposites prepared in this work was significantly improved, compared with the conventional microcomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号