首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porous yttria‐stabilized zirconia (YSZ) ceramics were fabricated using tert‐butyl alcohol (TBA)‐based gelcasting with monodisperse polymethylmethacrylate (PMMA) microspheres as both pore‐forming agent and lubricant agent. The TBA‐based slurry of 50 vol% solid loading with excellent rheological properties appropriate for casting was successfully prepared by using a commercial polymer dispersant DISPERBYK‐163 as both dispersant and stabilizer. The distribution of the spherical pores made from PMMA microspheres was very homogeneous. Their average diameter decreased from 16.9 to 15.7 μm when the sintering temperature was increased from 1350°C to 1550°C. The compressive strength increased from 14.57 to 142.29 MPa and the thermal conductivity changed from 0.17 to 0.65 W/m·K when the porosity decreased from 71.6% to 45.1%. The results show that this preparation technology can make all the main factors controllable, such as the porosity, the size and shape of pores, the distribution of pores, and the thickness and density of pore walls. This is significant for fabricating porous ceramics with both high compressive strength and low thermal conductivity.  相似文献   

2.
Lightweight glass‐ceramic material similar to foam glass was obtained at 700°C–800°C directly from alkali‐activated silica clay and zeolitized tuff without preliminary glass preparation. It was characterized by low bulk density of 100–250 kg/m3 and high pore size homogeneity. Chemical processes occurring in alkali‐activated silica clay and zeolitized tuff were studied using X‐ray diffraction, thermal gravimetry, IR‐spectroscopy, and scanning electron microscopy. Pore formation in both compositions is caused by dehydration of hydrated sodium polysilicates (Na2mSiO2·nH2O), formed during alkali activation. Additional pore‐forming gas source in alkali‐activated zeolitized tuff is trona, Na3(CO3)(HCO3)·2H2O, formed during interaction between unbound NaOH and CO2 and H2O from air. Influence of mechanical activation of raw materials on chemical processes occurring in alkaline compositions was also studied.  相似文献   

3.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

4.
Cr2AlC foams have been processed for the first time containing low (35 vol%), intermediate (53 vol%), and high (75 vol%) content of porosity and three ranges of pore size, 90‐180 μm, 180‐250 μm, and 250‐400 μm. Sacrificial template technique was used as the processing method, utilizing NH4HCO3 as a temporary pore former. Cr2AlC foams exhibited negligible oxidation up to 800°C and excellent response up to 1300°C due to the in‐situ formation of an outer thin continuous protective layer of α‐Al2O3. The in‐situ α‐Al2O3 protective layer covered seamlessly all the external surface of the pores, even when they present sharp angles and tight corners, reducing significantly the further oxidation of the foams. The compressive strength of the foams was 73 and 13 MPa for 53 vol% and 75 vol% porosity, respectively, which increased up to 128 and 24 MPa after their oxidation at 1200°C for 1 hour. The increase in the compressive strength after the oxidation was caused by the switch from inter‐ to transgranular fracture mode. According to the excellent high‐temperature response, heat exchangers and catalyst supports are the potential application of these foams.  相似文献   

5.
Cost‐effective ceramic tubes based on low‐price commercial calcined bauxite for economical separation were fabricated by a new phase‐inversion casting method. The thermal shrinkage and weight loss during heating of the green tubes were characterized by dilatometric analysis and TG, respectively. Three shrinkage stages appear successively, corresponding to the viscous deformation of polymeric binder at 200‐300°C, significant combustion loss of ~5.2 wt% at 500‐620°C and sintering shrinkage over 800°C, respectively. However, due to high enough viscosity of the casting suspension that can guarantee the green tube against collapse or deformation during the phase inversion/casting process, the sintered tubes display nearly uniform microstructure instead of characteristic asymmetrical structure of the phase inversion process. The influence of sintering temperature on the pore property (including pore size and porosity) and mechanical strength was investigated. As the sintering temperature increases from 1200 to 1400°C, the porosity and average pore size decrease from 46.4% to 37.0% and from 0.98 to 0.81 μm, respectively, and the flexural strength increases from 25.8 to 65.1 MPa. The cost‐effective ceramic tube sintering at the range of 1250‐1400°C can be capable of functioning as a microfiltration membrane or an ultrafiltration membrane support.  相似文献   

6.
A series of fluorinated polyamides was prepared directly by low‐temperature polycondensation of a new cardo diacid chloride, 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]xanthene (BCPX), with various diamines containing trifluoromethyl substituents in N,N‐dimethylacetamide (DMAc). Almost all polyamides showed excellent solubility in amide‐type solvents such as DMAc and could also be dissolved in pyridine, m‐cresol, and tetrahydrofuran. These polymers had inherent viscosities between 0.77 and 1.31 dL g?1, and their weight‐average molecular weights and number‐average molecular weights were in the range of 69,000–102,000 and 41,000–59,000, respectively. The resulting polymers showed glass transition temperatures between 240–258°C and 10% weight loss temperatures ranging from 484°C to 517°C and 410°C to 456°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 55%. All polymers were amorphous and could be cast into transparent, light‐colored, and flexible films with tensile strengths of 81–100 MPa, elongations at break of 8–12%, and tensile modulus of 1.6–2.1 GPa. These polymers had low‐dielectric constants of 3.34–3.65 (100 kHz), low‐moisture absorption in the range of 0.76–1.91%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 322–340 nm range. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Eight mol% Yttria‐stabilized zirconia, the most commonly employed electrolyte material for solid oxide fuel cells (SOFC), was shaped into honeycomb structures by thermally induced gelation of aqueous zirconia slurry containing methyl cellulose using microwave irradiation. The green honeycomb samples were subjected to green density and green compressive strength measurements revealing a uniform gelation and hence a relatively higher strength for microwave irradiated samples. The green honeycomb samples were further sintered to crack‐free dense honeycombs (>99% TD) at 1525°C for 1 h. Honeycomb samples were characterized for their physical, cellular, and electrical properties. A relatively high ionic conductivity value of 0.07 S/cm at 800°C and corresponding low activation energy of 0.61 eV in the temperature range 700–800°C provide opportunities to explore the development of novel designs for SOFC application.  相似文献   

9.
In this study, thermal radiation was employed for sintering silicon carbide foams that achieved a gradient porous structure. The simultaneous use of graphite and carbon fiber reinforced carbon composite (Cf/C) radiators resulted in an axial temperature gradient of ~600°C along the cylindrical sample, as confirmed by both numerical simulation and experimental measurement. By sintering the cylinder top at 1600°C for 5 min, the porous SiC body achieved an axial pore size gradient from ~106 ± 36 μm to ~250 ± 84 μm and an open porosity from 41.4 to 79.8 vol%. This work indicates the potential of sintering by intense thermal radiation technique for rapid manufacturing functionally graded materials through asymmetric assembly of thermal radiators.  相似文献   

10.
Li1.4Al0.4Ti1.6(PO4)3 (LATP) was synthesized using a glass‐ceramics approach through crystallization in a conventional box furnace and a modified microwave furnace. The microstructure of samples that were microwave processed at 1000°C showed a larger average grain size (0.87 μm) when compared with the grain size of conventionally processed samples (0.30 μm) at the same temperature. Microwave processing led to significant enhancement of the conductivity when compared with conventional processing for all crystallization temperatures investigated. The highest total conductivity achieved was of glass microwave processed at 1000°C, with a conductivity of 5.33 × 10?4 S/cm. This conductivity was five times higher than that of LATP crystallized conventionally at the same temperature.  相似文献   

11.
In this work, the oxidation‐induced crack healing of Al2O3 containing 20 vol.% of Ti2AlC MAX phase inclusions as healing particles was studied. The oxidation kinetics of the Ti2AlC particles having an average diameter of about 10 μm was studied via thermogravimetry and/or differential thermal analysis. Surface cracks of about 80 μm long and 0.5 μm wide were introduced into the composite by Vickers indentation. After annealing in air at high temperatures, the cracks were filled with stable oxides of Ti and Al as a result of the decomposition of the Ti2AlC particles. Crack healing was studied at 800, 900, and 1000°C for 0.25, 1, 4, and 16 hours, and the strength recovery was measured by 4‐point bending. Upon indentation, the bending strength of the samples dropped by about 50% from 402 ± 35 to 229 ± 14 MPa. This bending strength increased to about 90% of the undamaged material after annealing at 1000°C for just 15 minutes, while full strength was recovered after annealing for 1 hour. As the healing temperature was reduced to 900 and 800°C, the time required for full‐strength recovery increased to 4 and 16 hours, respectively. The initial bending strength and the fracture toughness of the composite material were found to be about 19% lower and 20% higher than monolithic alumina, respectively, making this material an attractive substitute for monolithic alumina used in high‐temperature applications.  相似文献   

12.
Porous SiC ceramics were synthesized by oxidation bonding of compacts of commercial α‐SiC powder at 1300°C. Different volume fractions of petroleum coke powder were used for variation of porosity of ceramics from 36% to 56%. The material exhibited variations of pore size from 3 to 15 μm, flexural strength from 5.5 to 29.5 MPa, and elastic modulus from 3.3 to 27.6 GPa. Air permeation behavior was studied at 26–650°C. At room temperature Darcian (k1) and non‐Darcian (k2) permeability parameters vary from 1.64 to 18.42 × 10?13 m2 and 0.58 to 2.95 × 10?7 m, respectively. Temperature dependence of permeability was explained from structural changes occurring during test conditions.  相似文献   

13.
《Ceramics International》2016,42(8):10079-10084
Porous glass-ceramics have been prepared by the direct sintering of powder mixtures of metallurgical silicon slag and waste glass. The thermal behavior of silicon slag was examined by differential thermal analysis and thermogravimetry to clarify the foaming mechanism of porous glass-ceramics. The mass loss of silicon slag below 700 °C was attributed to the oxidation of amorphous carbon from residual metallurgical coke in the silicon slag, and the mass gain above 800 °C to the passive oxidation of silicon carbide. The porosity of sintered glass-ceramics was characterized in terms of the apparent density and pore size. By simply adjusting the content of waste glass and sintering parameters (i.e. temperature, time and heating rate), the apparent density changed from 0.4 g/cm3 to 0.5 g/cm3, and the pore size from 0.7 mm to 1.4 mm. In addition to the existing crystalline phases in the silicon slag, the gehlenite phase appeared in the sintered glass-ceramics. The compressive strength of porous glass-ceramics firstly increased and then decreased with the sintering temperature, reaching a maximal value of 1.8 MPa at 750 °C. The mechanical strength was primarily influenced by the crystallinity of glass-ceramics and the interfaces between the crystalline phases and the glassy matrix. These sintered porous glass-ceramics exhibit superior properties such as light-weight, heat-insulation and sound-absorption, and could found their potential applications in the construction decoration.  相似文献   

14.
The sol–gel method was applied to the fabrication of amorphous silica membranes for use in hydrogen separation at high temperatures. The effects of fabrication temperature on the hydrogen permeation properties and the hydrothermal stability of amorphous silica membranes were evaluated. A thin continuous silica separation layer (thickness = <300 nm) was successfully formed on the top of a deposited colloidal silica layer in a porous glass support. After heat treatment at 800°C for an amorphous silica membrane fabricated at 550°C, however, it was quite difficult to distinguish the active separation layer from the deposited colloidal silica layer in a porous glass support, due to the adhesion of colloidal silica caused by sintering at high temperatures. The amorphous silica membranes fabricated at 700°C were relatively stable under steam atmosphere (500°C, steam = 70 kPa), and showed steady He and H2 permeance values of 4.0 × 10?7 and 1.0 × 10?7 mol·m?2·s?1·Pa?1 with H2/CH4 and H2/H2O permeance ratios of ~110 and 22, respectively. The permeance ratios of H2/H2O for membranes fired at 700°C increased drastically over the range of He/H2 permeance ratios by factors of ~3–4, and showed a value of ~30, which was higher than those fired at 500°C. Less permeation of water vapor through amorphous silica membranes fabricated at high temperatures can be ascribed to the dense amorphous silica structure caused by the condensation reaction of silanol groups.  相似文献   

15.
Ag‐containing bioactive glass films (Ag/Ca atomic ratios of 0, 5% and 10%) were sol‐gel prepared for bioactive and antibacterial modification of titanium. The gel powders calcined at 610°C are mainly amorphous confirmed by x‐ray diffraction, but small diffraction peaks of Ca3SiO5 and silver are detected. The film surface is porous with the pore size of ~200 nm. Silver‐rich sub‐micro particles with sizes of 100‐480 nm are present at the surface of Ag‐glass films. CaP phase, metallic silver and silica are detected by x‐ray photoelectron spectroscopy. The mean apparent bonding strength of the films is as high as 21±1 MPa measured by the pull‐off test. The potentiodynamic polarization test shows that the coated samples have better corrosion resistance than the polished sample. The Ag‐glass coatings and their wafer samples exhibit antibacterial activity against S. aureus. The coated samples are covered by apatite layer after soaked in the simulated body fluid for 2 weeks, demonstrating their bioactivity.  相似文献   

16.
A gas‐tight yttria‐stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO–YSZ anode substrates by a binder‐assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 μm. La0.8Sr0.2MnO3 (LSM)–YSZ was applied to cathode using a screen‐print technique and the single fuel cells were tested in a temperature range from 600 to 800 °C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 °C were 0.13, 0.44, and 1.1 W cm–2, respectively.  相似文献   

17.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
We present a simple synthetic route to hierarchically porous geopolymers using triglyceride oil for a reactive emulsion template. In the new synthetic method, highly alkaline geopolymer resin was first mixed with canola oil to form a homogeneous viscous emulsion which was then cured at 60°C to give a hard monolithic material. During the process, the oil in the alkaline emulsion undergoes a saponification reaction to be decomposed to water‐soluble soap and glycerol molecules which were then extracted with hot water to finally yield porous geopolymers. Nitrogen adsorption studies indicated the presence of mesopores, whereas the SEM studies revealed that the mesoporous geopolymer matrix are dotted with spherical macropores (10–50 μm) which are due to oil droplet template in the emulsion. Various synthetic parameters including the precursor compositions were examined to control the porosity. BET surface area and BJH pore volume of the materials were up to 124 m2/g and 0.7 cm3/g, respectively, and the total pore volumes up to 2.1 cm3/g from pycnometry.  相似文献   

19.
A tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) sub module for intermediate temperature (700–800 °C) operation was fabricated and operated in this study. For this purpose, we fabricated porous ceramic supports of 3 YSZ through an extrusion process and analyzed the basic properties of the ceramic support, such as visible microstructure, porosity, and mechanical strength, respectively. After that, we fabricated a tubular SIS SOFC single cell by using dip coating and vacuum slurry coating method in the case of electrode and electrolyte, and obtained at 800 °C a performance of about 400 mW cm–2. To make a sub module for tubular SIS SOFC, ten tubular SIS SOFC single cells with an effective electrode area of 1.1 cm2 were coated onto the surface of the prepared ceramic support and were connected in series by using Ag + glass interconnect between each single cell. The ten‐cell sub module of tubular SIS SOFC showed in 3% humidified H2 and air at 800 °C a maximum power of ca. 390 mW cm–2.  相似文献   

20.
The 40 mol% CeO2‐stabilized ZrO2 ceramic was synthesized by the sol‐spray pyrolysis method and aged at 1400°C–1600°C. The effects of high‐temperature aging on its fracture toughness were investigated after heat treatments at 1500°C for 6–150 h in air. Characterization results indicated that the activation energy for grain growth of 40 mol% CeO2‐stabilized ZrO2 was 593 ± 47 kJ/mol. The average grain size of this ceramic varied from 1.4 to 5.6 μm within the aging condition of 1500°C for 6–150 h. The Ce‐lean tetragonal phase has a constant tetragonality (ratio of the c‐axis to a‐axis of the crystal lattice) of 1.0178 during the aging process. It was found that the fracture toughness of 40 mol% CeO2‐stabilized ZrO2 was determined to be 2.0 ± 0.1 MPa·m1/2, which did not vary significantly with prolonging aging time. Since no monoclinic zirconia was detected in the regions around the indentation crack‐middle and crack‐tip, the high fracture toughness maintained after high‐temperature aging can be attributed to the remarkable stability of the tetragonal phase in 40 mol% CeO2‐stabilized ZrO2 composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号