首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystallization behavior of amorphous Si2BC3N monoliths by heating at 1000°C–1400°C and 5 GPa was investigated with the special attention to the nucleation mechanisms of β‐SiC and BN(C) phases. Nanoscale puckered structures arising in particle bridging areas were found and its evolution behavior well reflected the nucleation process of nanocrystallites. The temperature‐dependent crystallization of amorphous Si2BC3N monoliths at 5 GPa passes through four stages: The material remains amorphous below 1100°C. It undergoes partial phase segregation (1100°C–1200°C), followed by initiation of nucleation (1200°C–1250°C), and then nucleation and growth of β‐SiC and turbostratic BN(C) crystallites (>1250°C). The first principles calculation indicates the nucleation precedence of BN(C) phase over β‐SiC. BN(C) nucleates preferentially at bridges between ceramic particles causing SiC to concentrate in particle interiors thus forming capsule‐like structures.  相似文献   

2.
Organic-carbon-precursor-added B4C and B4C–SiC ceramics were subjected to pressureless sintering at various temperatures. The carbon precursor increased the densification of the B4C and B4C–SiC ceramics sintered at 2200 °C to 95.6 % and 99.1 % theoretical density (T.D.), respectively. The pyrolytic carbon content of the B4C–SiC composite decreased with increasing SiC content. The graphitization degree of pyrolytic carbon decreased slightly with the amount of carbon precursor and content of SiC. The 95 wt. % B4C–5 wt. % SiC composite added with 7.5 wt. % carbon precursor and sintered at 2200 °C outperformed the other B4C–SiC composites, and its sintered density, flexural strength, Young’s modulus, and microhardness were 98.6 % T.D., 879 MPa, 415 GPa, and 28.5 GPa, respectively. These values were higher than those of composites prepared via pressureless sintering and comparable to those of composites fabricated via hot pressing and/or using metal or oxide additives.  相似文献   

3.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

4.
《Ceramics International》2023,49(12):20406-20418
Herein, we present the structural evolution of polymer-derived SiOC ceramics with the pyrolysis temperature and the corresponding change in their microwave dielectric properties. The structure of the SiOC ceramics pyrolyzed at a temperature lower than 1200 °C is amorphous, and the corresponding microwave complex permittivity is pretty low; thus, the ceramics exhibit wave transmission properties. The Structural arrangement of free carbon in the SiOC ceramics mainly happens in the temperature range of 1200 °C-1300 °C due to the separation from the Si–O–C network and graphitization, while the structural arrangement of the Si-based matrix mainly occurs in the range of 1300 °C-1400 °C owing to the separation of SiC4 from the Si–O–C network to form nanocrystalline SiC. In pyrolysis temperature range of 1200 °C-1400 °C, the microwave permittivity of SiOC shows negligible change. At a pyrolysis temperature exceeding 1400 °C, the carbothermal reaction of free carbon and the Si–O backbone becomes significant, leading to the formation of crystalline SiC. The as-formed SiC and residual defective carbon improve the polarization loss of SiOC ceramics. In this case, the SiOC ceramics show significantly increased complex permittivity, exhibiting electromagnetic absorption characteristics. These characteristics promote the application of polymer-derived SiOC ceramics to high-temperature electromagnetic absorption materials.  相似文献   

5.
The fabrication of dense amorphous Si–B–C–N monoliths is a processing challenge given that it is hard to avoid crystallization at the sintering temperatures needed to attain full density up to 1900°C for conventional hot pressing and SPS methods. We report here successful densification of amorphous Si2BC3N monoliths achieved by heating at 1100°C and 5 GPa. The relationships between microstructure, types of chemical bonding, and mechanical properties were investigated. The strong amorphous 3‐D networks of Si–C, C–B, C‐N (sp3), N‐B (sp3), and C–B–N bonds provide high densities at high applied pressure and thus amorphous Si2BC3N monoliths show high hardness of 29.4 GPa and elastic modulus of 291 GPa. The amorphous structure is lost with crystallization of β‐SiC and BN(C) reducing contributions from Si–C, C‐N (sp3), and C–B–N bond networks thereby decreasing mechanical properties.  相似文献   

6.
A single‐source precursor for the preparation of HfC‐SiC ceramics was synthesized via a Grignard reaction using bis(cyclopentadienyl)hafnium(IV) dichloride, trans‐1,4‐dibromo‐2‐butene, and (chloromethyl)trimethylsilane as raw materials. The composition, structure, pyrolysis process and high‐temperature behavior of the precursor were investigated. The results show that the precursor with a backbone comprising Hf–C, Si–C and CH=CH groups exhibits good solubility in common solvents, such as tetrahydrofuran, dimethylbenzene, and chloroform. Pyrolysis of the precursor at 1000°C yielded a microcrystalline HfC phase with a ceramic yield of 63.86 wt%. The pyrolytic products at 1600°C were HfC–SiC nanocomposite ceramics, which exhibited good thermal stability up to 2400°C. The formation of a (Hf,Si)C solid‐solution would be beneficial for densification during the sintering process. The non‐oxygen structure, high ceramic yield, homogeneous composition and excellent high‐temperature behavior of the pyrolytic products make the as‐prepared precursor a promising material for the preparation of high‐performance ultra‐high‐temperature ceramics.  相似文献   

7.
Amorphous boron‐rich SiBCN were prepared by high‐energy ball‐milling of the mixtures of Si, graphite, h‐BN, and inorganic boron, which acted as extra boron source. The solid‐state amorphization, thermal stability, and crystallization of the boron‐rich SiBCN were studied in detail. It was suggested that mechanical alloying can drive solid‐state amorphization but also can be an initiation step for the nucleation of nanocrystals. The amorphous networks of Si‐C, C‐B, C‐C, C‐N, B‐N, and C‐B‐N bonds are detected by XPS; however, solid‐state NMR further confirms the formation of a new chemical environment around B atoms, BC3. The increases in boron content improve the thermal stability of SiBCN ceramics but weaken their oxidation resistance. Nano‐SiC crystallizes first while BN(C) forms subsequently. Boron promoting SiC crystallization may result from the reduced hindering effects of B‐N‐C nanodomains that retard SiC crystallization.  相似文献   

8.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

9.
Si/SiC composite ceramics was produced by reaction sintering method in process of molten silicon infiltration into porous C/SiC preform fabricated by powder injection molding followed by impregnation with phenolic resin and carbonization. To optimize the ceramics densification process, effect of slurry composition, debinding conditions and the key parameters of all technological stages on the Si/SiC composite characteristics was studied. At the stage of molding the value of solid loading 87.5% was achieved using bimodal SiC powder and paraffin-based binder. It was found that the optimal conditions of fast thermal debinding correspond to the heating rate of 10?°C/min in air. The porous C/SiC ceramic preform carbonized at 1200?°C contained 4% of pyrolytic carbon and ~25% of open pores. The bulk density of Si/SiC ceramics reached 3.04?g/cm3, silicon carbide content was 83–85?wt.% and residual porosity did not exceed 2%.  相似文献   

10.
Polyborodiphenylsiloxane (PPBSO) was reported to play significant roles in the preparation of advanced SiC ceramics as a precursor initiator, sintering binder and boron introducer. However, neither the effect of this important raw material on the pyrolysis process nor the evolution of boron has been clarified. This study synthesized PPBSO as a preceramic polymer and thoroughly investigated the constitutional and structural evolutions during organic-to-inorganic conversion. Boron was found to transform into the B(OSi)3 structure fully at 1300 °C, and this structure played an important role in increasing the Si content (from 18.51%wt to 35.84%wt) by forming a viscous fluid barrier that reduced the gaseous release, which led to an increase in the vapor pressure and a reduction in the Si–O–C phase decomposition according to the Le Chatelier principle. The dominant B–O–C phase that was observed at 1000 °C transformed into a B(OSi)3 structure, and high-pressure-formed BC4, detected via Raman spectroscopy, was the result of the partial pressure increase. A crystallization-promoting effect of free carbon in the presence of boron was also detected via Raman analysis. This study extensively describes the role of boron in the silicon carbide ceramic conversion process and will be of substantial benefit for the fabrication of high-performance ceramic materials.  相似文献   

11.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

12.
Several boron-containing organosilicon polymers were synthesized from a sodium-coupling reaction of silicon and boron halides with and without alkyl halide in hydrocarbon solvents. The B–Si preceramic polymers were characterized using techniques such as IR, UV, and NMR spectrometry, gel permeation chromatography, elemental analysis, molecular weight measurement, and thermal analyses (TGA, DSC, DTA, and TMA). The chemical structures of the preceramic polymers were postulated based on the analytical results. Black ceramic materials were obtained from the precursor polymers upon thermal degradation at temperatures above 1000°C in an inert atmosphere. The precursor polymers had a ceramic yield of up to 70%. Thermogravimetric analysis of the ceramic material in air at a flow rate of 100 mL/min showed it was stable up to 1000°C with little weight gain or loss. Several methods were used to characterize the ceramic materials: XRD, solid NMR, high-temperature DTA, elemental analysis, and acid digestion. The analyses indicated that the ceramic materials comprised a mixture of silicon carbide (SiC), silicon borides (SiB4, SiB6), and amorphous Si–B–C ceramics, with small amounts of silica and free silicon.  相似文献   

13.
Micro/mesoporous SiOC bulk ceramics with the highest surface area and the narrowest pore size distribution were prepared by water‐assisted pyrolysis of polysiloxane in argon atmosphere at controlled temperatures (1100°C–1400°C) followed by etching in hydrofluoric acid (HF) solution. Their pyrolysis behaviors, phase compositions, and microstructures were investigated by DSC, FTIR, XRD, and BET. The Si–O–Si bonds, SiO2‐rich clusters, and SiO2 nanocrystals in the pyrolyzed products act as pore‐forming species and could be etched away by HF. Water injection time and pyrolysis temperature have important effects on phase compositions and microstructures of the porous SiOC bulk ceramics, which have a maximum‐specific surface area of 2391.60 m2/g and an average pore size of 2.87 nm. The porous SiOC ceramics consist of free carbon phase, silicon carbide, and silicon oxycarbide.  相似文献   

14.
The present paper is concerned on the effect of infiltration temperature on the components, microstructure, and mechanical properties of reaction‐bonded boron carbide (RBBC) ceramics. RBBC ceramics were fabricated by reactive infiltration of molten silicon (Si) into porous preforms containing boron carbide (B4C) and free carbon. It has been found that infiltration temperatures have significant influence on the infiltration reactions involved and therefore the evolution of different phases formed in the RBBC ceramics. An increase in grain size of boron carbide particles through the coalescence of neighboring grains was observed at certain infiltration temperatures. The morphology of silicon carbide (SiC) phases developed from discontinuous and cloud‐like SiC to continuous and integrated SiC zones with the increase of infiltration temperatures. With increasing temperatures up to 1600°C, the hardness, flexural strength, and fracture toughness all increased. When the temperatures exceeded 1600°C, while the hardness and flexural strength decreased, the fracture toughness continued to increase.  相似文献   

15.
SiC nanocrystals were prepared using waste poly(vinyl butyral) sheet as a carbon source. SiO2/poly(vinyl butyral) mixtures are converted to SiO2/pyrolytic carbon composites via pyrolysis at low temperatures (500°C) in an Ar atmosphere. Subsequently, low‐temperature magnesiothermic reduction and purification processes result in the formation of tiny SiC nanocrystals. The size of the synthesized SiC nanocrystals ranged from 3 to 12 nm, i.e., they are smaller than the SiO2 precursor offering large specific surface area of 175.76 m2/g and are single phase as 3C–SiC. Hence, 3C–SiC nanocrystals were successfully synthesized using waste poly(vinyl butyral) through this simple, inexpensive, and scalable process, which will be a new application in the recycling industry.  相似文献   

16.
Liquid preceramic poly(silylacetylene)siloxane resin was synthesized via a two-step protocol including organometallic condensation and hydrolysis reactions. The preceramic resin was well soluble in acetone, toluene, and tetrahydrofuran (THF), etc. By thermal cure at 180–250 °C a hard monolithic solid was formed through radical polymerization of secondary ethynyl groups. The poly(silylacetylene)siloxane resin was processed easily to various nonporous shapes to silicon carbide (SiC) and silicon oxycarbide (SiCO). SiCO ceramic was obtained at a yield of >75% by pressureless pyrolysis at 900–1200 °C; while SiC ceramic was obtained at 1500 °C at a yield of ≈67%. The molar ratio of Si/C in the SiC was found at 1:1.1–1:3, based on ICP-MS elemental analysis. X-ray diffraction (XRD) results revealed the typical β-SiC structure in the poly(silylacetylene)siloxane derived SiC ceramics. The SiC ceramics exhibited high thermo-oxidation resistance at elevated temperatures in air atmosphere.  相似文献   

17.
Homogenous liquid precursor for ZrC–SiC was prepared by blending of Zr(OC4H9)4 and Poly[(methylsilylene)acetylene]. This precursor could be cured at 250°C and converted into binary ZrC–SiC composite ceramics upon heat treatment at 1700°C. The pyrolysis mechanism and optimal molar ratio of the precursor were investigated by XRD. The morphology and elements analyses were conducted by SEM and corresponding energy‐dispersive spectrometer. The evolution of carbon during ceramization was studied by Raman spectroscopy. The results showed that the precursor samples heat treated at 900°C consisted of t‐ZrO2 (main phase) and m‐ZrO2 (minor phase). The higher temperature induced phase transformation and t‐ZrO2 converted into m‐ZrO2. Further heating led to the formation of ZrC and SiC due to the carbothermal reduction, and the ceramic sample changed from compact to porous due to the generation of carbon oxides. With the increasing molar ratios of C/Zr, the residual oxides in 1700°C ceramic samples converted into ZrC and almost pure ZrC–SiC composite ceramics could be obtained in ZS‐3 sample. The Zr, Si, and C elements were well distributed in the obtained ceramics powders and particles with a distribution of 100 ~ 300 nm consisted of well‐crystallized ZrC and SiC phases.  相似文献   

18.
A preceramic polymer for Si? B? N? C fiber, polyborosilazane, has been synthesized by one‐step condensation reaction of dichloromethylsilane, BCl3, and hexamethyldisilazane with high yield. The reaction mainly involves the condensation of Si? Cl and B? Cl with N? SiMe3 followed by SiMe3Cl evaporation and dehydrogenation between N? H and Si? H. The resulted polymer is a soluble colorless transparent solid with melting point of 70°C and molecular weight of 10,800. The backbone of the polymer is mainly composed of ? Si? N? B‐bridge with some borazine rings. The polymer exhibits good processability and flexible polymer fibers with diameter of 15–20 μm were obtained by melt spinning. Pyrolysis of the as‐synthesized polymer to 1000°C under nitrogen atmosphere results in a ceramic yield of 63 wt %, and the obtained Si? B? N? C ceramic remains fully amorphous up to 1700°C, and only small amount of poorly crystallized BN, Si3N4, and SiC phases were observed upon heating at 1850°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Polysiloxanes [RSiO1.5]n with R=CH3 (PMS) and C6H5 (PPS), respectively, were transformed to Si–O–C ceramics of variable composition and structure upon pyrolysis in inert atmosphere at 800–1500°C. The electrical conductivities of the Si–O–C ceramics in air were measured at room temperature by using a shielded two point configuration. In situ measurements of the dc-conductivity during the pyrolytic conversion from the polymer to the ceramic phase were carried out up to 1500°C with four point contacted carbon electrodes in inert atmosphere. During polymer-ceramic conversion excess carbon precipitates above 400°C (PPS)–700°C (PMS). At temperatures above 800°C (PPS) and 1400°C (PMS) coagulation and growth of the carbon clusters results in a percolation network formation. While below the percolation threshold electrical conductivity can be described according to Motts mechanism by variable-range-hopping of localized charge carriers, regular electron band conduction due to the instrinsic conductivity of turbostratic carbon (8×10−4 (Ωcm)−1) predominates above. Thus, the in situ measurement of non-linear electrical property changes can be used as a microprobe of high sensivity to detect microstructural transformations during the pyrolysis of preceramic polymers.  相似文献   

20.
Precursor polycarbosilane containing acetylenic and Si? H group (PCAS) has been successfully prepared by the reaction of dilithioacetylene with methyl dichlorosilane, and characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and 29Si‐NMR. Thermogravimetric analysis curve in nitrogen showed the temperature of 5 wt % weight losses (Td5) was 613°C, while the ceramic yield of PCAS was 88% at 1000°C. Pyrolysis behavior and structure evolution of the cured PCAS were studied by means of X‐ray diffraction, Raman, scanning electron microscope‐energy dispersive X‐ray spectrometer, transmission electron microscope (selected area electron diffraction and high resolution transmission electron microscope), and elemental analysis. The polymer to ceramic conversion was completed at 1600°C and the results revealed that the ceramic consisted of β‐SiC and α‐SiC. The composition of the ceramic was near‐stoichiometric with molar ratio of Si/C (1.02 : 1) except rare and localized free carbon inclusions. The SiC ceramics exhibited high thermo‐oxidation resistance at elevated temperatures in air atmosphere. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41335.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号