首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
The mechanism of anisotropic growth of HfB2 rods has been discussed in this study. HfB2 powder has been synthesized via a sol–gel‐based route using phenolic resin, hafnium chloride, and boric acid as the source of carbon, hafnium, and boron respectively, though a small number of comparative experiments involved amorphous boron as the boron source. The effects of calcination dwell time and Hf:C and Hf:B molar ratio on the purity and morphology of the final powder have been studied and the mechanism of anisotropic growth of HfB2 has been investigated. It is hypothesized that imperfect oriented attachment of finer HfB2 particles results in screw dislocations in the coarser particles. The screw dislocation facilitates dislocation‐driven growth of particles into anisotropic HfB2 rods.  相似文献   

2.
Ultrafine hafnium diboride (HfB2) powders were synthesized by the boro/carborthermal reduction process. Fine‐scale mixing of the reactants was achieved by solution‐based processing using hafnium oxychloride (HfOCl2·8H2O) and phenolic resin as the precursor of HfO2 and carbon respectively. The heat treatment was completed at a temperature range 1300–1500°C for 1h using spark plasma sintering (SPS) apparatus. The crystallite sizes of the synthesized powders were small (<500 nm) and the oxygen content was low (0.85 wt%). The grain growth of HfB2 could be effectively suppressed using SPS due to the fast heating rate. The effects of temperature and holding time on the synthesis of ultrafine HfB2 powders were discussed.  相似文献   

3.
This study reports on the synthesis of hafnium diboride (HfB2)-based nanofibers via electrospinning of polyhafnoxanesal (PHO)-based solution followed by pyrolyzing hafnium-boron containing polyvinylpyrrolidone precursor fibers by a moderate heat treatment at 1500°C under argon atmosphere. The influence of the molar ratios of C/Hf and B/Hf in preceramic polymer method is investigated on the final phase of HfB2-based nanofibers. Structural, thermal, microstructural, and physical properties of the hafnium-based fibers are evaluated using Fourier transform infrared spectra (FTIR), thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffractometer (XRD), high-temperature X-ray diffraction (HT-XRD), field-emission scanning electron microscope/energy-dispersive spectrometer (FE-SEM/EDS), and Brunauer-Emmett-Teller (BET). The results unveiled that the acidic pH was the optimal condition needed for obtaining the single phase of HfB2 nanofibers. The precursor fibers with the stoichiometric ratio of 1:4:5 of Hf:B:C prepared under the acidic conditions converted into pure HfB2 nanofibers having rough and porous surface after pyrolysis at 1500°C for 2 hour in argon, whereas HfB2-HfC composite nanofibers with smooth surface were produced in the neutral conditions. The HfB2 nanofibers with a mean diameter of ~100 nm prepared under the acidic conditions showed a higher specific surface area compared to HfB2-HfC composite nanofibers with a diameter of ~121 nm derived in the neutral conditions.  相似文献   

4.
Carbon fiber/phenolic (C/Ph) composites were modified with different weight ratios of hafnium diboride (HfB2) nanofibers to apperceive thermomechanical properties of C/Ph–Hf nanocomposites. Mechanical properties, thermal stability, and ablation resistance of C/Ph–Hf nanocomposites were found to be optimum when the weight percentage of HfB2 was equal to one. Maximum flexural strength and modulus were obtained with 118 MPa and 1.9 GPa for C/Ph–1%Hf nanocomposite, respectively. Increasing the proportion of HfB2, by delaying the temperature of thermal degradation of nanocomposites, enhanced the thermal stability and residual of C/Ph–Hf relative to C/Ph in both nitrogen and air environments. In the oxyacetylene flame test at 2500°C for 160 s, the optimum mass ablation rate of C/Ph–1%Hf nanocomposites was found to be 0.0150 g/s compared to 0.068 g/s for blank C/Ph, along with reducing the back surface temperature by 51%. The ablation mechanism of C/Ph–Hf nanocomposites after the oxyacetylene torch test was concluded from the derivations obtained from X-ray diffraction, energy dispersion spectroscopy, and microstructure analyses. These clarified that the formation of high-temperature species, such as HfO2, HfC, and B4C owing to oxidation of HfB2 and subsequent reaction products with char, resulted in an increased ablation resistance of the nanocomposites.  相似文献   

5.
Phase pure hafnium diboride (HfB2) powder was synthesized by borothermal reduction of hafnium dioxide using amorphous boron at relatively low temperature (1600°C) in vacuum. The synthesized HfB2 powder had an average particle size of 1.37 μm with an equiaxed shape, and a low oxygen content of 0.79 wt%. Using the as-synthesized HfB2 powder and a commercial SiC, HfB2 monolithic, and HfB2–20 vol%SiC composite were hot pressed at 2000°C to relative densities of 95.7% and 99.2%, respectively. With the addition of SiC, the grain size decreased and the fracture behavior changed from intergranular to a mixed mode, which resulted in a high flexural strength of 993±90 MPa for the composite. Fracture toughness of the composite was 6.29±0.65 MPa m1/2, which was significantly higher than that of the HfB2 monolithic and the reported values in literature.  相似文献   

6.
This paper discusses the development of continuous SiC fiber‐reinforced HfB2‐SiC composite laminates. A range of techniques, based on resin‐based precursors and slurries, for infiltrating porous SiC preforms with HfB2 powder were developed. While resin‐based precursors proved to be ineffective due to low HfB2 yield and poor adhesion, the slurry infiltration techniques were effective to varying degrees. The greatest pore filling and composite densities were achieved using pressure and vibration‐assisted pressure infiltration techniques. SiCf/HfB2‐SiC laminates were subsequently developed via lamination, cure and pyrolysis of fabrics using a HfB2‐loaded polymeric SiC precursor, followed by HfB2 slurry infiltration and preceramic polymer infiltration and pyrolysis (PIP). Repeated PIP processing, for 6–10 cycles, resulted in density increases, from the 3.03–3.22 g/cm3 range after HfB2 slurry infiltration, to 3.97–4.03 g/cm3 after PIP processing. Correspondingly, there was a decrease in open porosity from approximately 52% to less than 11%. The matrix consisted of discreet, lightly sintered HfB2 particles dispersed in SiC. The PIP SiC matrix was primarily nanocrystalline after 1300°C pyrolysis, but experienced grain growth with further heat treatment at 1600°C.  相似文献   

7.
In this study, nanosized Hf(C,N,O) ceramics were successfully prepared from a novel precursor synthesised by combining HfCl4 with ethylenediamine and dimethylformamide. Subsequently, the carbothermal reduction of these Hf(C,N,O) ceramics into hafnium carbide was investigated. The Hf(C,N,O) ceramics comprised Hf2ON2 and HfO2 nanocrystals and amorphous carbon. Upon carbothermal reduction, conversion began at 1300 °C, when HfC first appeared, and continued to completion at 1500 °C, resulting in irregularly shaped crystallites measuring 50–150 nm. Upon increasing the dwelling time, the oxides were completely converted into carbides at 1400 °C. Furthermore, nitrogen was introduced into the reaction to catalyse the conversion of oxides into carbides considering the beneficial gas–solid reaction between CO and Hf2ON2. We expect that the ceramics prepared in this study will be suitable for the fabrication of high-performance composite ceramics, with properties superior to those of current materials.  相似文献   

8.
《Ceramics International》2023,49(15):25504-25515
HfB2-MoSi2-based ultra-high temperature ceramic (UHTC) coatings have shown remarkable antioxidant effects owing to the formation of silicate glass layers with low oxygen permeability in high-temperature environments, which shows great potential in the antioxidation of carbon structural materials. To further enhance the oxidation resistance of the HfB2-MoSi2-based coating in a wide temperature region, the influence of volume ratio between HfB2 and TaB2 on the antioxidant capacity of the HfB2-MoSi2-TaB2 coatings was investigated. The addition of 15 vol% TaB2 in the 60HfB2-40MoSi2 coating delays the initial oxidation temperature of the 60HfB2-40MoSi2 sample from 300 °C to 500 °C, which decreased the oxidation loss by 75.85% during dynamic oxidation. In oxidation process at 900 °C and 1700 °C, the weight gains of the 45HfB2-40MoSi2–15TaB2 coating reduced by 78.56% and 63.14%, respectively. Due to the coexistence of 45 vol%HfB2 and 15 vol%TaB2, the suitable Ta5+ promoted the homogenization and dispersion of Hf/Ta-oxides, which forms the coral-like Hf/Ta oxides skeleton in the glass layer, thus preventing the oxygen penetration and decreasing the inert factor of the HfB2-MoSi2 coating at 1700 °C by 51.19%. However, excessive TaB2 weakened the self-healing ability of the Ta-Hf-Si-O glass layer and inhibited the oxygen barrier effect of the HfB2-MoSi2-TaB2 coating.  相似文献   

9.
《Ceramics International》2022,48(12):16499-16504
The thermochemical degradation of hafnium silicate (HfSiO4) was investigated with a molten calcium-magnesium-aluminosilicate (CMAS) glass relevant to gas turbine engine applications. Sintered HfSiO4 coupons were fabricated, within which wells were drilled and filled with CMAS glass powder at a loading of ~35 mg/cm2. Samples were heat treated at 1200°C, 1300°C, 1400°C, and 1500°C for 1 h, 10 h, and 50 h. At 1200°C and 1300°C, slow formation of a Ca2HfSi4O12 cyclosilicate phase was observed at the HfSiO4-CMAS interface. At 1300°C and higher, rapid infiltration of CMAS into the material along the grain boundaries was observed. Initial conjecture into CMAS degradation mechanisms of HfSiO4 are presented herein.  相似文献   

10.
A mechanically induced self‐sustaining reaction (MSR) was used to synthesize hafnium diboride nanoparticles. Along this route, magnesium was selected as a robust reducing agent for co‐reduction in boron and hafnium oxides in a combustive manner. Combustion occurred after a short milling period of 12 minutes. The hafnium diboride nanoparticles had a polygonal faceted morphology and were 50‐250 nm in diameter. The assessment of the processing mechanism revealed that the initial combustive reduction in B2O3 to elemental B by Mg was the major step for progressing the overall reaction. After that, HfO2 can be reduced to elemental Hf, followed by the synthesis of HfB2 phase.  相似文献   

11.
《Ceramics International》2016,42(3):3797-3807
HfB2 powders were synthesized via a borothermal reduction route from mechanically activated HfCl4 and B powder blends. Mechanical activation of the powder blends was carried out for 1 h in a high-energy ball mill using hardened steel vial and balls. Mechanically activated powders were subsequently annealed at 1100 °C for 1 h under Ar atmosphere. Then, purification processes such as washing with distilled water and leaching in HCl solution were applied for the elimination of the undesired boron oxide (B2O3) phase and the probable Fe impurity. The effect of boron amount on the microstructure of the resultant powders was investigated. The boron amount in the starting blends plays an important role in the formation of the HfO2 phase. HfB2 powders without any detectable HfO2 were prepared by adding 20 wt% excess amount of boron. Microstructural analyses of the mechanically activated, annealed and purified powders were performed using X-ray diffractometer (XRD), particle size analyzer (PSA), stereomicroscope (SM), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and transmission electron microscope (TEM).  相似文献   

12.
To improve the anti-oxidation and ablation properties of carbon/carbon (C/C) composites, they are modified by hafnium boride (HfB2) using a two-step process of in situ reaction and thermal gradient chemical vapor infiltration. X-ray diffraction is used to monitor the composition of the samples. Scanning electron microscope images show that the carbon fibers are uniformly coated by HfB2 particles. The oxidation onset temperature of carbon fibers is greatly increased from 300 to 700 °C after HfB2 coating. After modification with HfB2, the linear and mass ablation rates of the C/C composites are decreased by 51.80% and 24.32%. During oxidation and ablation, the interface between carbon matrix and fiber is effectively protected by HfB2 due to the reaction of HfB2 with the oxygen, and the resultant hafnium oxide may form the liquid film to resist the oxygen at high temperature.  相似文献   

13.
Dense HfB2-TiB2-SiC-MoSi2 quadruplet composite was produced by a reactive pressureless sintering method at 2050 °C for 5 h. The relative density was improved and reached 98% by in situ formation of SiC and MoSi2 phases. Microstructural studies proved that SiC and MoSi2 second phases were mostly formed during the sintering process. Moreover, the Sintering mechanism of the composite was investigated by HSC software. TiB2 co-matrix was improved the sinterability of the composite by the formation of (Hf,Ti,Mo)–B and (Hf,Ti,Mo)–C solid solutions.Mechanical properties such as Vickers hardness (23.2 GPa), fracture toughness (5.4 MPa m1/2), and elastic modulus (430 GPa) were effectively enhanced by tailoring the composite.  相似文献   

14.
Synthesis of single‐phase tantalum hafnium carbide (TaxHf1?xC, 0<x<1) solid solution nanopowders via carbothermal reduction (CTR) reaction is complicated due to the difference in reactivity of parent oxides with carbon and presence of a miscibility gap in TaC‐HfC phase diagram below ~887°C. These can lead to phase separation, ie, formation of two distinct carbides instead of a single‐phase solid solution. In this study, nanocrystalline TaxHf1?xC powders were synthesized via CTR of finely mixed amorphous tantalum‐hafnium oxide(s) and carbon obtained from a low‐cost aqueous solution processing of tantalum pentachloride, hafnium tetrachloride, and sucrose. Particular emphasis was given to investigate the influences of starting compositions and processing conditions on phase separation during the formation of carbide phase(s). It was found that due to the immiscibility of Ta‐Hf oxides and relatively fast CTR reaction, individual nano‐HfC and TaC phases form quickly (within minutes at 1600°C), then go through interdiffusion forming carbide solid solution phase. Moreover, the presence of excess carbon in the CTR product slows down the interdiffusion of Ta and Hf dramatically and delays the solid solution formation, whereas DC electrical field (applied through the use of a spark plasma sintering system) accelerates interdiffusion significantly but leads to more grain growth.  相似文献   

15.
A carbide boronizing method was first developed to produce dense boron carbide‐ zirconium diboride (“B4C”–ZrB2) composites from zirconium carbide (ZrC) and amorphous boron powders (B) by Spark Plasma Sintering at 1800°C–2000°C. The stoichiometry of “B4C” could be tailored by changing initial boron content, which also has an influence on the processing. The self‐propagating high‐temperature synthesis could be ignited by 1 mol ZrC and 6 mol B at around 1240°C, whereas it was suppressed at a level of 10 mol B. B8C–ZrB2 ceramics sintered at 1800°C with 1 mole ZrC and 10 mole B exhibited super high hardness (40.36 GPa at 2.94 N and 33.4 GPa at 9.8 N). The primary reason for the unusual high hardness of B8C–ZrB2 ceramics was considered to be the formation of nano‐sized ZrB2 grains.  相似文献   

16.
During the spark plasma sintering at 1900 °C, SiB6 decomposes into cubic silicon carbide and boron carbide, owing to the reducing environment of the furnace. For the HfB2-SiB6 ceramic improvement in hardness (24.5 ± 0.7 GPa) was attributed to the formation of the B12(C,Si,B)3. Fracture toughness by indentation (6.8 ± 2.4 MPa·m1/2), single-edge notched bend specimens (4.6 ± 0.4 MPa·m1/2) and room-temperature strength (513 ± 21 MPa) of the HfB2–SiB6 composite produced by spark plasma sintering was higher or on the same level as the HfB2–SiC ceramics. The high-temperature flexural strength tests suggested that the strength would decrease monotonically with an increase in temperature. At or below 1600 °C, only a linear stress-strain response was observed, and resulted into a mean strength of ~320 MPa. During the tests at 1800 °C, we observed a nonlinear deformation indicating ongoing plastic deformation which led to a strength decrease down to 230 ± 30 MPa.  相似文献   

17.
The ceramic precursor for HfB2/HfC/SiC/C was prepared via solution‐based processing of polyhafnoxanesal, linear phenolic resin, boric acid and poly[(methylsilylene)acetylene)]. The obtained precursor could be cured at 250°C and subsequently heat treated at relative lower temperature (1500°C) to form HfB2/HfC/SiC/C ceramic powders. The ceramic powders were characterized by element analysis, thermal gravimetric analysis, X‐ray diffraction, Raman spectroscopy, and Scanning electron microscopy. The results indicated that the ceramic powders with particle size of 200~500 nm were consisted of pure phase HfB2, HfC, and SiC along with free carbon as fourth phase with low crystallinity.  相似文献   

18.
Hi‐Nicalon?‐S SiC fiber was heat treated for 1 hour at 1300°C, 1400°C, and 1500°C in argon with pO2 of 3.7, 10, 20, 50, 100, and 200 ppm. Fiber strengths were measured by 30 single‐filament tensile tests. Fiber microstructure and surface morphology were characterized by TEM. Active oxidation occurred in all cases except at 1500°C with 200 ppm pO2, 1400°C with 100 ppm pO2 or higher, and 1300°C with 50 ppm pO2 or higher. When active oxidation did not occur, a glass SiO2 scale formed at 1300°C and 1400°C, and a cristobalite scale formed at 1500°C. The thickness of these scales was much larger than that predicted by linear dependence of oxidation rate on pO2. Fiber strengths were lowest after heat treatment at 1300°C and a pO2 of 3.7 ppm, 1400°C and a pO2 of 20 ppm, and 1500°C and a pO2 of 200 ppm. Active oxidation caused fiber surface roughening, but no obvious changes to the internal fiber microstructure. Decreased fiber strength correlated with increased fiber surface roughness, but roughness magnitudes were not large enough to explain the amount by which strength was degraded. Fiber strengths, surface roughness, scale thicknesses, and the passive‐active oxidation transition for SiC are compared with previous observations. Possible strength degradation mechanisms are discussed.  相似文献   

19.
Sol–gel precursors to HfB2 and ZrB2 are processed by high‐energy ultrasonication of Hf,Zr oxychloride hydrates, triethyl borate, and phenolic resin to form precipitate‐free sols that turn into stable gels with no catalyst addition. Both precursor concentration and structure (a sol or a gel) are found to influence the synthesis of the diboride phase at high temperature. Decreasing sol concentration increases powder surface area from 3.6 to 6.8 m2/g, whereas heat‐treating a gel leads to residual oxides and carbides. Particles are either fine spherical particles, unique elongated rods, and/or platelets, indicating particle growth with directional coarsening. Investigation of the conversion process to ZrB2 indicates that a multistep reaction is likely taking place with: (1) ZrC formation, (2) ZrC reacts with B2O3 or ZrC reacts with B2O3 and C to form ZrB2. At low temperatures, ZrC formation is limiting, while at higher temperatures the reaction of ZrC to ZrB2 becomes rate limiting. ZrC is found to be a direct reducing agent for B2O3 at low temperature (~1200°C) to form ZrB2 and ZrO2, whereas at high temperatures (~1500°C) it reacts with B2O3 and C to form pure ZrB2.  相似文献   

20.
A pressureless sintering process, using a small amount of boron carbide (≤2 wt%) as sintering aid, was developed for the densification of hafnium diboride. Hafnium diboride ceramics with high relative density were obtained when the sintering temperature changed from 2100 °C to 2350 °C. However, the sintering mechanism was varied from solid state sintering (SSS, below 2300 °C) to liquid phase sintering (LPS, above 2300 °C). Boron carbide addition improved densification by removing the oxide impurities during solid state sintering and by forming a liquid phase which was well wetting hafnium diboride grains during liquid phase sintering process. The different roles of B4C on the microstructure development and mechanical properties of the sintered ceramics were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号