首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Piezoelectric Lead Zirconate Titanate Ceramic Fiber/Polymer Composites   总被引:1,自引:0,他引:1  
Piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer composites were fabricated by a novel technique referred to as "relic" processing. Basically, this involved impregnating a woven carbon-fiber template material with PZT precursor by soaking the template in a PZT stock solution. Careful heat treatment pyrolized the carbon, resulting in a PZT ceramic relic that retained the fibrous template form. After sintering, the densified relic was backfilled with polymer to form a composite. Optimized relic processing consisted of soaking activated carbon-fiber fabric twice in an intermediate concentration (405-mg PZT/(1-g solution)) alkoxide PZT solution and sintering at 1285°C for 2 h. A series of piezoelectric composites encompassing a wide range of dielectric and piezoelectric properties was prepared by varying the PZT-fiber orientation and polymer-matrix material. In PZT/Eccogel polymer composites with PZT fibers orientated parallel to the electrodes, K = 75, d 33= 145 pC/N, d h= 45 ± 5 pC/N, and d hgh= 3150 × 10−15 m2/N were measured. Furthermore, in composites with a number of PZT fibers arranged perpendicular to the electroded surfaces, K = 190, d 33= 250 pC/N, d h= 65 ± 2 pC/N, and d h gh= 2600 × 10−15 m2/N.  相似文献   

2.
Curie Temperature Anomaly in Lead Zirconate Titanate/Silver Composites   总被引:1,自引:0,他引:1  
The Curie temperatures of lead zirconate titanate-based (PZT-based) composites that were incorporated with silver particles were evaluated as a function of the silver content. Although the substitution of the silver ion has been considered to decrease the Curie temperature, PZT/silver composites exhibited higher Curie temperatures than those of monolithic PZT ceramics. It was found that the Curie temperature gradually increased as the silver content increased. It was suggested that the observed Curie temperature anomaly resulted from the relaxation of transformation-induced internal stress by intergranular silver particles.  相似文献   

3.
The ability to pattern piezoelectric thin films without damage is crucial for the development of microelectromechanical systems. Direct patterning of complex oxides through microcontact printing was explored as an alternative to subtractive patterning. This process utilized an elastomeric stamp to transfer a chemical solution precursor of a piezoelectric material onto a substrate in a desired pattern. Polyurethane‐based stamps improved wetting of polar solutions on the stamp. This allowed for high‐fidelity patterning over multiple stamping cycles. Microcontact printing deposited patterned PbZr0.52Ti0.48O3 layers from 0.1 to 1 μm in thickness. The lateral feature sizes attained varied from 5 to 500 μm. Upon crystallization at 700°C, the features formed phase‐pure perovskite PZT. The printed features had comparable electrical and electromechanical properties to those of continuous PZT films of similar thicknesses. For example, 1 μm thick PZT features had a permittivity of 1050 and a loss tangent of 0.02 at 10 kHz. The remanent polarization was 30 μC/cm2, and the coercive field was 45 kV/cm. The piezoelectric coefficient e31,f was ?7 C/m2. These values indicated that the microcontact printing process did not adversely affect the PZT crystallization or properties for the thicknesses explored in this work.  相似文献   

4.
Conventional sintering and fast firing were examined as sintering techniques for PZT-5 pressed compacts. Density maxima of 7.42 ± 0.05 and 7.66 ± 0.01 g/cm3 were obtained at 1350°C for conventionally sintered ceramics and at 1300°C for fast-fired ceramics, respectively. Analysis of the ceramic obtained from these two sintering routes showed fast-fired material to possess a three-point fracture strength 33% greater and an average grain size almost 50% less than the conventionally sintered counterpart.  相似文献   

5.
The adhesion of electrolessly deposited Ni onto lead zirconate titanate (PZT) ceramic has been measured as a function of both the ceramics surface preparation prior to metalization and the plated Ni thickness. A maximum in NI/PZT interfacial adhesion of approximately 27 kg/cm2, as measured by a pull test, occurs when the ceramic grain boundaries are chemically etched, thereby providing points to mechanically anchor the Ni deposit. The adhesion decreases with overetching as the ceramic grains are undercut and drops off dramatically with increasing plated Ni thickness.  相似文献   

6.
Lead zirconate titanate (PZT) is a piezoelectric material that can sense or respond to mechanical deformations and can be used in ceramic electro-mechanical systems (C-MEMS). The microstructural, electrical, and piezoelectric characteristics of thick PZT films on low-temperature cofired ceramics (LTCC) and alumina substrates were studied. The PZT composition was prepared with low-melting-point additives in order to decrease the sintering temperature and to be compatible with thick-film technology. The integration of the PZT thick-film materials on ceramic substrates could lead to degradation of the PZT's characteristics due to the interactions between an active PZT layer and a substrate, particularly with glassy LTCC material. To minimize the interactions with LTCC substrates, an intermediate PZT barrier layer was integrated. The value of the piezoelectric coefficient d 33 was found to be up to 120 pC/N on an alumina substrate and approximately 50 on an LTCC substrate. Based on these results, a cantilever-type actuator was designed and fabricated on alumina substrates. Under an applied voltage of 200 V, the maximum tip deflection was about 5 μm.  相似文献   

7.
Nanocrystalline lead zirconate titanate (PZT) powders, with a Zr:Ti ratio of 60:40, have been prepared from a solution of triethanolamine (TEA) and Ti4+, Zr4+, and Pb2+ ions. The metal ions were in solution through complex formation with TEA. The soluble metal-ion–TEA complex formed the precursor material when it was completely dehydrated. Heat treatment of the precursor at 450°C resulted in single-phase PZT powders. The precursor and the heat-treated powders have been characterized by using thermal analysis and X-ray diffractometry (XRD) studies. The average particle size, as measured from X-ray line broadening and transmission electron microscopy studies, was ∼20 nm. PZT powders modified with 3 mol% of lanthanum (PLZT) also were prepared through this route and were investigated via XRD studies. The dielectric constants of the PZT and PLZT powders were 12475 and 11262, and their corresponding Curie temperatures were 362° and 315°C, respectively.  相似文献   

8.
对锆钛酸铅陶瓷材料进行了Nb2O5、SrCO3微量掺杂改性研究,观察了掺杂后陶瓷样品的显微结构,研究了其相对介电常数、压电常数、机电耦合系数及电容量变化率随测试温度变化的规律。实验结果表明:Nb2O5、SrCO3掺杂后,陶瓷结构致密,介电损耗减少,相对介电常数、压电常数、机电耦合系数明显提高,电容量变化率明显改善。当Nb2O5、SrCO3的添加量为0.6wt%时,制得的压电陶瓷材料具有最佳的压电性能:εr=2100,D33=450pC/N,Kp=0.81,ΔC/C10%(-55~85℃),可以满足高性能的汽车倒车雷达的应用要求。  相似文献   

9.
Lead zirconate titanate (PZT) ceramics were co-fired with pure Ag powders at 1200°C for 1 h, and the ferroelectric and piezoelectric properties of the resultant PZT/Ag composites were evaluated, aimed at potential applications in functionally graded piezoelectric actuators with enhanced mechanical reliabilities. In the range of 1–15 vol% Ag concentration, pure Ag powder remained as the second phase in the composites, and a small quantity of Ag entered into the crystal lattice of PZT and slightly increased the lattice constants of a and c . The Ag powders were found to aggregate together and grow to larger particles in the composites. The ceramic grains grew from an initial size of 1.5 μm for monolithic PZT to 2.5 μm for the PZT/Ag composites, and the grain size was almost the same for various Ag concentrations. It was found that the ferroelectric and piezoelectric properties decreased when Ag was added to PZT. In the range of 1–15 vol% Ag concentration, the remanent polarization P r decreased from 38 to 27 μC/cm2, the piezoelectric constant d 33 decreased from 394 to 105 pC/N, and the planar electromechanical coupling factor k p decreased from 0.69 to 0.15, respectively. These piezoelectric properties of the present PZT/Ag composites were compared with the results reported for PZT/Pt composites, and discussed in relation to microstructural features.  相似文献   

10.
The woven replication process was used to fabricate lead zirconate titanate (PZT)/polymer composites with 1–3, 2–3, and 3–3 connectivities by starting with novoloid-derived carbon fiber, woven fabric, and nonwoven felt templates, respectively. Activated carbon-fiber template material was impregnated with PZT by soaking it in a solution containing stoichiometric amounts of dissolved lead, zirconium, titanium, and niobium ions. Heat treatment burned out the carbon, leaving a PZT replica with the same form as the template material. Replicas were sintered in a controlled atmosphere and backfilled with an epoxy polymer to form final composites. This method, which is believed to be adaptable for mass production, is capable of producing composites with extremely fine microstructures. Woven composite samples have fiber tow diameters of 200 to 250 μm and spacings between tows of about 150 to 250 μm. Average d 33= 90 pC/N, g 33= 211 mV · m/N, and dhgh hydrophone figure of merit of 2100 × 10−15 m2/N values are reported for woven PZT/polymer composites.  相似文献   

11.
孟庆华  朱孔军  邵斌  董娜娜  裘进浩 《硅酸盐学报》2012,40(2):271-272,273,274,275,276
以醋酸铅[Pb(CH3COO)2^-33H20]、硝酸锆[Zr(N03)4^-5H2O]和钛酸四丁酯[Ti(C4H90)4]为原料,以二乙醇胺(diethanolamine,DEA)为聚合剂.用溶胶-凝胶法制备了锆钛酸铅(PbZrxTil-x03,PZT)纳米陶瓷粉体。研究了DEA对溶胶-凝胶法合成PZT陶瓷粉体的影响...  相似文献   

12.
High-toughness and high-strength lead zirconate titanate (PZT) composites that contain fine silver particles were successfully fabricated at low sintering temperatures. Addition of silver to a PZT matrix did not result in unwanted reaction phases; however, some silver diffused toward the perovskite crystal structure. A small quantity of silver accelerated the sinterability of the PZT composites. The formation of oxygen vacancies due to the partial substitution of silver appeared to enhance the sinterability of the PZT. Fracture toughness depended on the size and degree of sphericity of the silver particles, and SEM observations on crack propagation suggested that the toughening mechanism in the PZT/Ag composites involves crack bridging resulting from the ductile behavior of silver particles. It is proposed that high fracture strength in PZT/1 to 5 vol% Ag composites results from the relaxation of transformation-induced internal stress by the silver particles.  相似文献   

13.
Ferroelastic Properties of Lead Zirconate Titanate Ceramics   总被引:5,自引:0,他引:5  
To increase the reliability of multilayer actuators, calculation of the mechanical stress inside the device during operation is important. This paper shows that the small-signal value of the elastic constant s is not sufficient to describe the complicated behavior of lead zirconate titanate (PZT) ceramics. Therefore, compressive strain and depolarization have been measured as a function of large-signal stress applied parallel to the poling direction. The nonlinear dependence of the strain and depolarization can clearly be explained by domain processes. Soft and hard PZT ceramics have been investigated. In hard PZT, domain switching appears at higher stresses than in soft PZT. Moreover, in hard PZT, the domains partly switch back during unloading. The critical stress (coercive stress) necessary for a domain-switching process shows a dependence on the Zr:Ti ratio that is quite similar to the dependence of the electric coercive field. The influence of an electric field applied parallel to the poling direction and superimposed on the compression experiment also has been examined. The coercive stress depends linearly on the electric field. The linear coefficient of this relation is given by the ratio of depolarization to compressive strain caused by domain switching.  相似文献   

14.
15.
Electrophoretic deposition (EPD) of submicrometer lead zirconate titanate (PZT) powders in ethanol was conducted to form thick green PZT films up to 160 μm thick. The PZT colloid stability, as a function of pH, was studied by zeta-potential measurement. The electrical condition of the suspension was quantified by conductivity measurement at various pH values. The effect of different applied current densities on the deposition mass was investigated. A kinetic model for the constant-current-density EPD process, taking into account the particle concentration variation, was also examined, based on the experimental results obtained in the present work. An empirical relationship between the kinetic constant and the applied current density has been proposed.  相似文献   

16.
Crack–opening displacement (COD) measurements were performed on a commercial lead zirconate titanate (PZT). The intrinsic fracture toughness (or crack–tip toughness) of this material was determined using a new evaluation procedure, which takes into account the near–tip CODs and complete crack profile CODs. The crack–tip toughness K I0 was determined from an extrapolation of COD data obtained at various loading stages, thus avoiding the complications caused by subcritical crack growth in PZT. Results for plane strain and plane stress condition are presented.  相似文献   

17.
We report on a systematic study of the magnetoelectric effect in cobalt ferrite (CoFe2O4)—barium titanate (BaTiO3) ceramic composites with (0‐3) connectivity. Both the converse magnetoelectric coefficient, αC, and the direct voltage magnetoelectric coefficient, αE, were measured in dependence on composition and electric and magnetic bias fields. The strongest ME effect was observed in the composition (1?x) CoFe2O4xBaTiO3 with x = 0.5 yielding values αC = 25 psm?1 and αE = 3.2 mV/(cm·Oe). We show that the proper conversion between these two coefficients demands knowledge about the dielectric permittivity of the sample. For low BaTiO3 content the dielectric coefficient of the composite yields a better correspondence, whereas for high BaTiO3 content the sample's average dielectric coefficient yields a better match. The influence of mutual orientation of polarization and magnetization on the ME effect is addressed. We found that for measurements performed parallel to the polarization direction (longitudinal effect), the ME coefficient is approximately twice as large and of opposite sign in comparison to the measurements perpendicular to the polarization direction (transverse effect). This difference has been rationalized in terms of the different contributions of the material coefficient tensor components to the ME effect, the demagnetizing factor, and losses. The obtained results provide a better understanding of peculiarities of the ME effect in bulk ceramic composites.  相似文献   

18.
In the conventional poling method, piezoelectric ceramics and composites are poled by applying a large dc voltage. Poling of composites having a polymer matrix with 0–3 connectivity is especially difficult because the electric field within the high-dielectricconstant grains is far smaller than in the low-dielectric-constant polymer matrix. Therefore, very large electric fields are required to pole these types of composites. However, large electric fields often cause dielectric breakdown of the samples. In this study for improved poling, the corona discharge technique was used to pole piezoelectric ceramics, fired PZT composites, and 0.5PbTiO3· 0.5BiFeO3 0–3 polymer composites. An experimental setup for corona poling is described. The dielectric and piezoelectric properties of materials poled by the corona discharge technique were comparable to those obtained with the conventional poling method.  相似文献   

19.
Microstructural evolution of lead lanthanum zirconate titanate (PLZT) ceramics caused by diffusion of the Mn ion was observed. Specimens with layered structures were fabricated by copressing a PLZT powder (9/65/35) doped with Mn and same PLZT powder without the dopant. When the copressed specimen was sintered at 1200°C in air, the Mn ion diffused out of the doped region. The region originally containing the Mn ions was totally free of pores while all other regions remained porous. The formation of lattice vacancies, as a result of Mn diffusion, was attributed to the enhanced material transport and the resultant rapid densification.  相似文献   

20.
以Pb(NO3) 2、ZrOCl2·8H2O 和TiCl4作为原料,NaOH作为矿化剂,水热合成锆钛酸铅粉体.系统研究了物质的量比Pb/(Zr,Ti)、矿化剂NaOH浓度、反应温度、反应时间4个因素对PZT晶相形成和粉体形貌的影响.结果表明Pb/(Zr,Ti)在1.7~2.0,NaOH的浓度为1 mol/L、反应温度为200 ℃、时间2 h的水热条件下,可以合成结晶良好的Pb(Zr,Ti)O3粉末.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号