首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of glasses with compositions of 20Na2O–30Nb2O5–(5?y?z)Al2O3–30P2O5–(15?x)TiO2xGeO2yEr2O3zYb2O3, where x = (0; 5; 10; 15), y = (0; 1), z = (0; 2) mol%, were investigated with respect to their structural, optical, and luminescence properties. The coordination of the germanium(IV) ion is normally reported as being mainly tetrahedral. However, results of this study suggest that the germanium(IV) ion may have an octahedral coordination and that TiO2 is substituted. This proposition can be done mainly by 31P MAS‐NMR spectroscopy, which spectra show predominantly pyrophosphate chains in the different glasses, without changes in their polymerization after substitution. A similar coordination of germanium can also be identified by the photoluminescence behavior of the different codoped samples, which shows similar erbium(III) emission decay lifetimes (5 ms), and Judd–Ofelt intensity parameters. It was found that the upconversion emission process involved 1.5 photons. Regarding the thermal behavior, it is noted that the glasses containing higher proportions of GeO2 exhibit higher thermal stability and are therefore more resistant to devitrification when compared to compositions containing more TiO2.  相似文献   

2.
The influence of Nb2O5 on the structure and ionic conductivity of potassium phosphate glasses was investigated in glasses with composition xNb2O5–(100-x)[0.45K2O–0.55P2O5], x = 10–47 mol%. The Raman spectra of glasses reveal a transition from predominantly orthophosphate to predominantly niobate glass network with increasing Nb2O5 content. In the glass structure, niobium forms NbO6 octahedra which are interlinked with phosphate units for the glass containing 10 mol% Nb2O5, but for higher Nb2O5 content they become mutually interconnected via Nb-O-Nb bonds. The transport of potassium ions was found to be strongly dependent on the structural characteristics of the glass network. While the mixed niobate-phosphate glass network hinders the diffusion of potassium ions by providing traps that immobilize them and/or by blocking the conduction pathways, predominantly niobate glass network exhibits a rather facilitating effect which is evidenced in the trend of DC conductivity as well as in the features of the frequency-dependent conductivity and typical hopping lengths of potassium ions.  相似文献   

3.
Ceramics of LaxSr1?xNbyTi1?yO3 (LSNT) were synthesized under various reducing atmospheres. Covering the specimens with graphite carbon felt under an Ar‐gas flow during sintering drastically enhanced the electrical conductivity, σ. Ti K‐edge absorption spectra indicated the presence of Ti3+ for heavily reduced specimens. The increase in conductivity was attributed to the 3d band of Ti3+. The maximum value for the figure of merit, ZT, was obtained for strontium titanate ceramics modified with both 5 mol% La and 5 mol% Nb, namely 5/5‐LSNT, exhibiting a ZT value of ~0.221 at 473 K. This high ZT value was almost 1.5 × larger than that of the conventional 10 mol% La‐doped sample, 10/0‐LSNT (ZT~0.144), and was mainly attributed to the larger Seebeck coefficient of the material.  相似文献   

4.
Aerodynamic levitation and CO2 laser melting have been used to synthesize the yttrium aluminosilicate glasses zY2O3yAl2O3xSiO2 with z/y = 3/5 corresponding to the YAG (Y3Al5O12) composition and x between ~5 and ~45 mol%. The low‐ and high‐density (LDA inclusion and HDA matrix) polyamorphic phases in glasses with less than ~14 mol% SiO2 were identified with backscattering electron imaging. Polarized and depolarized Raman spectra show the formation of various Qn SiO4 species whose relative populations change smoothly as the SiO2 content is altered. The AlOs (s = 4–6) and YOz (z = 6–9) polyhedra formed in the YAG glass are preserved upon silica additions while the terminal oxygens of the Q2AlO4 tetrahedra are gradually bridged to the Qn‐SiO4 species. The low‐frequency Boson Peak overlaps with the vibrational spectrum and its maximum is redshifted with increasing silica content. Micro‐Raman spectra measured for the LDA and HDA amorphous phases are found to be similar to the spectra of the bulk glass indicating common structural characteristics. The stability of the LDA phase against crystallization appears to be lower than that of the HDA phase. The crystallinity on certain inclusions consisted of YAG microcrystals and a new unidentified microcrystalline phase within Y4Al2(1?x)Si2xO(9+x) solid solution.  相似文献   

5.
《Ceramics International》2016,42(13):14700-14709
Two bioactive glasses with different chemical compositions (mol%) 46.2SiO2–26.9CaO–24.3Na2O–2.6P2O5 (45S5) and 40SiO2–54CaO–6P2O5 (A2) were synthesized by the use of sol–gel and melt–quenching techniques. The effect of synthesis method on glass structure was investigated using X-ray diffraction, FTIR, Raman, XPS, 29Si and 31P MAS–NMR spectroscopic methods. The results show that the synthesis route has significant influence on the glass structure. Both melt–derived A2 and 45S5 glasses exhibit fully amorphous structure, while gel–derived ones, stabilised at 700 °C, reveal the presence of crystalline silicate and phosphate phases. Gel–derived glasses exhibit more polymerized structure compared to melt–quenched ones. Phosphorus is present in the orthophosphate type environment (Q0) together with some pyrophosphate (Q1) species and it does not take part in the formation of Si–O–P bonds. This indicates that phosphorus acts as a glass structure modifier and forms phosphate-rich phase separated from a silica-rich one. The theoretically predicted network connectivity is consistent with the experimental determination only for melt–derived glasses, assuming silicon as the only network former.  相似文献   

6.
High refractive index glasses with nominal composition of 0.35La2O3–(0.65?x)Nb2O5xTa2O5 (x ≤ 0.35) were prepared by aerodynamic levitation method. The effect of Ta2O5 substituting on their thermal and optical properties was investigated. All the glasses obtained were colorless and transparent. Differential thermal analyzer results show that as the content of Ta2O5 increased, the thermal stability of the glasses increased but the glass‐forming ability decreased. The transmittance spectra of all the obtained glasses exhibited a wide transmittance window ranging from 380 to 5500 nm. As the content of Ta2O5 increased, the refractive index of the glasses was enhanced from 2.15 to 2.21 and the dispersion was reduced with the Abbe number increasing from 20 to 27.  相似文献   

7.
Phosphate-based glasses of composition xNa2O−(45+(10−x))CaO−45P2O5 with different Na2O, CaO (= 1, 5, 10, 15, and 20 mol%), and invariable P2O5 (45 mol%) contents were prepared using the rapid melt quench technique. The obtained thermal data from differential thermal analysis revealed a decline in glass transition (Tg) and crystallization (Tc) temperatures of glasses against the compositional changes. The inclusion of Na2O at the cost of CaO in the glass network led to a reduction in its thermal stability. The thermal treatment carried out on glasses helped to derive their glass-ceramic counterparts. The amorphous and crystalline features of samples were characterized using X-ray diffraction patterns. The crystalline species that emerged out of the calcium phosphate phases confirmed the dominance of Q1 and Q2 structural distributions in the investigated glass-ceramics. The obtained scanning electron micrographs and atomic force microscopic images confirmed the surface crystallization and textural modification of the samples after thermal treatment. The N2-adsorption–desorption studies explored the reduction of porous structures due to thermal treatment on the melt-driven glass surface. The measured elastic moduli and Vicker's hardness values of the glasses showed an increase after thermal treatment, which were reduced against the inclusion of alkali content in both glass and glass-ceramics.  相似文献   

8.
The article reports on the structural dependence of crystallization in Na2O–Al2O3–B2O3–P2O5–SiO2-based glasses over a broad compositional space. The structure of melt-quenched glasses has been investigated using 11B, 27Al, 29Si, and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, while the crystallization behavior has been followed using X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. In general, the integration of phosphate into the sodium aluminoborosilicate network is mainly accomplished via the formation of Al–O–P and B–O–P linkages with the possibility of formation of Si–O–P linkages playing only a minor role. In terms of crystallization, at low concentrations (≤5 mol.%), P2O5 promotes the crystallization of nepheline (NaAlSiO4), while at higher concentrations (≥10 mol.%), it tends to suppress (completely or incompletely depending on the glass chemistry) the crystallization in glasses. When correlating the structure of glasses with their crystallization behavior, the MAS NMR results highlight the importance of the substitution/replacement of Si–O–Al linkages by Al–O–P, Si–O–B, and B–O–P linkages in the suppression of nepheline crystallization in glasses. The results have been discussed in the context of (1) the problem of nepheline crystallization in Hanford high-level waste glasses and (2) designing vitreous waste forms for the immobilization of phosphate-rich dehalogenated Echem salt waste.  相似文献   

9.
Dependence of electrical properties on the structural characteristics of Li0.04(K0.5Na0.5)0.96(Nb1?ySby)O3 (LKNNS (x = 0, 0.00  y  0.10)) and [Li0.04(K0.5Na0.5)0.96?xAgx](Nb0.925Sb0.075)O3 (LKNANS (0.01  x  0.05, y = 0.075)) were investigated. The oxygen octahedral distortion was dependent on Ag+ and/or Sb5+ content which affected to the phase transition temperature of LKNNS and LKNANS ceramics. The orthorhombic–tetragonal and tetragonal–cubic phase transition temperatures (TO–T, TC) of the specimens were decreased with increasing of average octahedral distortion. With increasing of Sb5+ content, the electromechanical coupling factor (kp), piezoelectric constant (d33) and dielectric constant (?r) of the sintered specimens were increased up to y = 0.075, and then decreased. These results could be attributed to the shift of TO–T to near room temperature for Li0.04(K0.5Na0.5)0.96(Nb0.0925Sb0.075)O3.  相似文献   

10.
Thermal behavior, structural properties, and phase equilibria of the (100−x)TeO2-xNa2O system were studied in the 5 ≤  50 mol% composition range. Investigation of glass formation behavior in the binary system was realized, and the glass formation range was determined as 7.5 ≤  40 mol%. Differential thermal analysis (DTA) and Fourier transform infrared (FTIR) spectroscopy techniques were used for thermal and structural characterization of the glasses. Influence of Na2O content on glass transition temperature (Tg), glass stability (∆T), density (ρ), molar volume (VM), oxygen molar volume (VO), and oxygen packing density (OPD) values of sodium tellurite glasses was evaluated considering the structural transformations in the glass network. For the phase equilibria studies, DTA, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive X-ray (SEM/EDS) techniques were utilized to characterize the heat-treated samples. According to the phase equilibria studies, three eutectic regions were detected in the 0 < < 50 mol% composition range of the (100−x)TeO2-xNa2O system. A new invariant endothermic reaction was detected for the compositions between 40 ≤  45 mol%. Na2O.8TeO2 (11.11 mol% Na2O) compound that was claimed to exist in the binary system in the literature was found to be the metastable δ-TeO2 phase.  相似文献   

11.
The effect of the average ionic potential ξ = Ze/r of the network modifier cations on crack initiation resistance (CR) and Young's modulus E has been measured for a series of alkaline-earth aluminoborosilicate glasses with the compositions 60SiO2–10Al2O3–10B2O3–(20−x)M(2)O–xM’O (0 ≤ x ≤ 20; M, M’ = Mg, Ca, Sr, Ba, Na). Systematic trends indicating an increase of CR with increasing ionic potential, ξ, have been correlated with structural properties deduced from the NMR interaction parameters in 29Si, 27Al, 23Na, and 11B solid state NMR. 27Al NMR spectra indicate that the aluminum atoms in these glasses are essentially all four-coordinated, however, the average quadrupolar coupling constant <CQ> extracted from lineshape analysis increases linearly with increasing average ion potential computed from the cation composition. A similar linear correlation is observed for the average 29Si chemical shift, whereas the fraction of four-coordinate boron decreases linearly with increasing ξ. Altogether the results indicate that in pure alkaline-earth boroaluminosilicate glasses the crack resistance/E-modulus trade-off can be tailored by the alkaline-earth oxide inventory. In contrast, the situation looks more complicated in glasses containing both Na2O and the alkaline-earth oxides MgO, CaO, SrO, and BaO. For 60SiO2–10Al2O3–10B2O3–10MgO–10Na2O glass, the NMR parameters, interpreted in the context of their correlations with ionic potentials, are consistent with a partial network former role of the MgO component, enhancing crack resistance. Altogether the presence of MgO in aluminoborosilicate glasses helps overcome the trade-off issue between high crack resistance and high elasticity modulus present in borosilicate glasses, thereby offering additional opportunities for the design of glasses that are both very rigid and very crack resistant.  相似文献   

12.
《Ceramics International》2021,47(20):28328-28337
This work consists of in vitro bioactivity (in SBF) and antibacterial studies (against S. aureus and E. coli bacteria) of Nb2O5 doped bioactive glasses. X-ray diffraction and scanning electron microscopy investigations indicated deposition of Nb-HAp (hydroxyapatite) crystalline layer on the samples after exposing to SBF. The spectroscopy investigations also indicated the deposition of HAp layer on these samples. The magnitude of HAp deposited on the glasses found to be relying on concentration of Nb2O5 dopant; this conclusion was drawn by determining weight loss of the glasses due to exposure to SBF and also by assessing the variation of pH of the remnant fluid as functions of Nb2O5content. The studies further indicated the maximal content of hydroxyapatite was deposited on the surface the glasses doped with 4.0 mol% of Nb2O5. The antibacterial studies (against E. coli and S. aureus bacteria) of these glasses indicated the maximal killing effect of bacteria of the samples admixed with 4.0 mol% of Nb2O5. This result is attributed to the occupancy of maximal fraction of Nb ions in NbO6 structural units (confirmed by IR and Raman spectroscopic results) in this sample that paved the way for easy disintegration of the glass and to act on the bacteria. Overall, the results of bioactivity studies of Nb2O5 doped bioglasses indicated that the Nb2O5 not only enhanced bioactivity potential but also exhibited antimicrobial activity.  相似文献   

13.
Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure-property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron-oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J. Non-Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16082 ] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short-to-medium range structures of sodium borosilicate glasses in the system 25 Na2O x B2O3 (75 − x) SiO2 (x = 0-75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of 11B, 23Na, and 29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3 and BO4 species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B-O-T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core-shell parameterization model proposed by Edén underestimates the fraction of BO4 species of the glass with composition 25Na2O 18.4B2O3 56.6SiO2 but can accurately reproduce the shape of the 11B and 29Si MAS-NMR spectra of the glasses investigations due to the narrower B–O–T and Si-O-T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3 and BO4 units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.  相似文献   

14.
The present research exposes the influence of 2 mol% of Al2O3 and 2 mol% SrO in 45S5 Bioglass®-based compositions. Four compositions were produced to elucidate the difference in how both oxides influence structure and thermal behavior separately and their synergy when together. Thermal properties, crystallization tendency, and sintering behavior was evaluated by differential scanning calorimetry, hot stage microscopy, and dilatometry. Changes of medium-range structures were characterized by Qn distribution of Raman spectroscopy and evaluation of 31P, 27Al, 23Na, and 29Si environment obtained by magic angle spinning nuclear magnetic resonance. Despite Qn distribution was predominantly Q2 in all samples, the composition criteria used enabled improved processing and stabilibity characteristics. The addition of Al2O3 and SrO promoted larger sinterability parameter (Sc) which indicates better sintering behavior, the glass stability against crystallization doubled (KH) compared to 45S5 and the processing window enlarged from 106 to 171.  相似文献   

15.
Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses with the compositions (100-2x)SiO2- xNb2O5- xLi2O where x = 32.5, 30, 25, and 15 mol%. Permittivity measurements and glass compositions were used to calculate the polarizability of each cation-anion unit in the glass network using the Clausius-Mossotti equation. The SiO2 polarizability in niobiosilicates was calculated to be 6.16 Å3, which is much higher than the SiO2 polarizability in fused silica glass (5.25 Å3), alkali modified silicates (5.37 Å3), and aluminosilicates (5.89 Å3). The increasing trend in SiO2 polarizability is attributed to the disruption in the connectivity of the SiO4 tetrahedral network as it accommodates different network formers. The high SiO2 polarizability of 6.16 Å3 accurately predicts measured dielectric permittivity when Nb2O5 = 25, 30, and 32.5 mol%, but overpredicts measured permittivity when Nb2O5 ≤ 15 mol%, which is attributed to a decrease in SiO2 polarizability as the percentage of corner sharing SiO4 tetrahedra with NbO6 octahedra goes down. This work demonstrates that SiO2 polarizability depends on chemistry and connectivity of the glass, which has important implications in designing glass compositions for microwave frequency applications.  相似文献   

16.
We report on the individual roles of charge carrier density and network modification in sodium ion conducting glasses from the Na2O-P2O5-SO3-AlF3 (NAPFS) system. For this, a broad range of glass compositions was considered across the series of 44Na2O/(56 – x − y)P2O5/xAlF3/ySO3, 47Na2O/(53 − x − y)P2O5/xAlF3/ySO3, and 50Na2O/(50 − x − y)P2O5/xAlF3/ySO3, with x = 8, 12, 16, 20 and y = 0, 5, 7, 10, 12. Impedance spectroscopy was conducted on these glasses at frequencies from 10−2 to 106 Hz and over temperatures from 50 to 250°C, and complemented by structural analyses using Raman spectroscopy and nuclear magnetic resonance data. While the trends in dc conductivity and activation energy follow that of Na2O content (increasing from 44 to 50 mol%), substantial enhancement of conductivity (by about two orders of magnitude) and correspondingly lower activation energy were also found for constant Na2O concentration when adjusting SO3 or AlF3 within specific limits of glass structure.  相似文献   

17.
Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high‐level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5 mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) – Vanadium (V) oxide, and (iii) glass matrix. 29Si MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5 mol% V2O5 addition, silicate network is dominantly constituted of Q2 and Q3 structural units, whereas above this, the network gets more polymerized through formation of Q3 and Q4 units. In case of borate network, 11B MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5 mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro‐Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring‐type metaborate and VO5 units exists. It is therefore apparent from both MAS‐NMR and micro‐Raman studies that with V2O5 additions within the solubility limit (≤5 mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0–4.2 GPa.  相似文献   

18.
《Ceramics International》2020,46(12):19880-19889
This paper focuses on the evaluation of the radiation attenuation properties of 15CaF2-10CaO-5B2O3-(65-x)P2O5-xNiO-5BaO (where 0 ≤ x ≤ 1.0 mol%) bioactive glasses. The radiation attenuation features of these glasses were investigated by determining different factors including mass attenuation coefficient (μ/ρ), exposure and absorption buildup factors (EBF and EABF), neutron removal cross section (NRCS), and effective atomic number (Zeff) for photon, proton, and carbon ion interactions. Geant4 toolkit and Phy-X program were employed for simulations and calculations procedures. The results revealed that NiO content in the studied bioactive glasses has a significant effect on photon interaction and an insignificant effect on the charged particle interactions. The Zeff values of the studied glasses were observed in the range of 18–20 for photon interaction, 10.7–10.9 for proton interaction, and 10.0–10.7 for carbon ion interaction. The NRCS values were 0.087, 0.088, 0.089, 0.090, and 0.091 cm-1 for x = 0, 0.4, 0.6, 0.8 and 1.0 mol%, respectively. The studied bioactive glasses showed a good ability to attenuate gamma radiation at energies of medical applications.  相似文献   

19.
The glass–ceramics containing a rarely achievable nanocrystalline SrIINbIVO3 phase in the 53.75SiO2–18.25K2O–9Bi2O3–9SrO–9Nb2O5–0.5CeO2–0.5Eu2O3 (mol%) glass system were prepared by the melt‐quench technique followed by a two‐stage controlled heat treatment. The unusual oxidation state of Nb in SrIINbIVO3 crystal is 4+ and upon heat treatment of the samples at lower temperature of 500°C for several hours, the glass composition and chemical environment around Nb ions played a key role for the formation of SrIINbIVO3 in the glass–ceramics. The microstructure of the glass–ceramics was studied using TEM and FESEM. The TEM images advocate 10–40 nm crystallite size of SrIINbIVO3. FTIR study confirms that all the samples consist of SiO4, BiO3, BiO6, and NbO6 structural units. The refractive index at different wavelengths was found to vary in the range 1.7105–1.7905 and increase with increase in heat‐treatment time. The luminescence spectra of Eu3+‐doped glass and glass–ceramics were recorded at 465 nm excitation wavelength and the luminescence intensity is found to be increased with heat‐treatment time due to increase in crystallinity. The high intensity ratio of 5D07F2 to 5D07F1 indicates that the Eu3+‐doped nanocrystalline SrIINbIVO3 glass–ceramics are promising candidate materials as red‐light source.  相似文献   

20.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号