首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computationally efficient strategy for modeling tricalcium silicate hydration based on through‐solution‐phase kinetics is demonstrated. This study extends a recently introduced advanced continuum‐based single particle model by including rigorous multi‐ionic transport, nonlinear reversible reaction kinetics and portlandite precipitation. Model parameters were either fixed based on known values, estimated using experimental measures or extracted by model fitting to benchmark experimental datasets. The model is now able to generate calorimetric hydration and evolution of pore solution chemistry responses that are in good agreement with available experimental results and predictions of other multiphysical modeling platforms. Once calibrated, the model was tested to see if it could predict the effect of water to cement ratio (w/c) and particle size on hydration outcomes. The findings support the need for a mechanism that limits the volume into which product can form.  相似文献   

2.
Two types of carbon‐based materials, i.e., mesoporous carbon and HNO3‐oxidized carbon nanotubes, with nearly the same specific surface area and abundant in surface oxygen‐containing functional groups were selected in order to examine their effect on the hydration of tricalcium silicate (C3S), the main portland cement component, in early stages. Different methods, including XPS and TG‐MS analyses, electrokinetic potential measurements, as well as determination of adsorption capacity for calcium ions from aqueous solutions, were used to investigate the physicochemical surface properties of the selected carbon‐based materials. It was found that the carbon‐based materials with high specific surface area and rich in oxygen‐containing functional groups on their surfaces have a catalytic effect on early C3S hydration. It was observed that the modification of C3S paste with the selected materials added in high concentrations (1 wt% and higher) led to an increase in the rate and degree of C3S hydration in the early stages. The mechanism of early C3S hydration accelerated by carbon‐based materials rich in surface functional groups was clarified by the example of the mesoporous carbon. It was found that the oxygen‐containing functional groups present on the carbon surface have both an influence on the content of calcium ions in the aqueous phase of the C3S paste and an indirect positive effect in relation to the specific surface of C3S.  相似文献   

3.
The partial replacement of ordinary portland cement (OPC) by fine mineral fillers accelerates the rate of hydration reactions. This acceleration, known as the filler effect, has been attributed to enhanced heterogeneous nucleation of C‐S‐H on the extra surface provided by fillers. This study isolates the cause of the filler effect by examining how the composition and replacement levels of two filler agents influence the hydration of tricalcium silicate (T1‐Ca3SiO5; C3S), a polymorph of the major phase in ordinary portland cement (OPC). For a unit increase in surface area of the filler, C3S reaction rates increase far less than expected. This is because the agglomeration of fine filler particles can render up to 65% of their surface area unavailable for C‐S‐H nucleation. By analysis of mixtures with equal surface areas, it is hypothesized that limestone is a superior filler as compared to quartz due to the sorption of its aqueous CO32? ions by the C‐S‐H—which in turn releases OH? species to increase the driving force for C‐S‐H growth. This hypothesis is supported by kinetic data of C3S hydration occurring in the presence of CO32? and SO42? ions provisioned by readily soluble salts. Contrary to prior investigations, these results suggest that differences in heterogeneous nucleation of the C‐S‐H on filler particle surfaces, caused due to differences in their interfacial properties, have little if any effect on C3S hydration kinetics.  相似文献   

4.
Tricalcium silicate does not undergo hydration at relative humidities (RH's) below 80%. But, the rate at which its hydration rate decreases as a function of the RH has not yet been elucidated. By invoking correspondence between RH and water activity (aH, unitless), both of which are related to the chemical potential of water, the reaction evolutions of triclinic tricalcium silicate (i.e., T1‐Ca3SiO5 or C3S) are tracked in water + isopropanol (IPA) mixtures, prepared across a wide range of water activities. Emphasis is placed on quantifying the: (a) rate of hydration as a function of aH, and (b) the critical (initial, aH0c or the achieved) water activity at which hydration effectively ceases, i.e., does not progress; here identified to be ≈ 0.70. The hydration of tricalcium silicate is arrested even when the system remains near saturated with a liquid phase, such that small, if any, capillary stresses develop. This suggests that changes in chemical potential induced via a vapor‐phase or liquid‐phase route both induce similar suppressions of C3S hydration. A phase boundary nucleation and growth (pBNG) model is fit to measured hydration rates from the onset of the acceleration period until well beyond the rate maximum when the water activity is altered. The simulations suggest that for a fixed hydrate nucleation density, any water activity reductions consistently suppress the growth of hydration products. Thermodynamic considerations of how water activity changes may influence reactions/hydrate evolutions are discussed. The outcomes improve our understanding of the chemical factors that influence the rate of Ca3SiO5 hydration.  相似文献   

5.
Effect of water to cement (w/c) ratio and temperature profiles on the densification of C–S–H (calcium silicate hydrate gel) and hydration kinetics of triclinic tricalcium silicate (C3S) is studied beyond the first day of hydration. Calorimetry and quantitative X‐ray diffraction/Rietveld analysis show that degree of hydration is unaffected by w/c up to 7 days and marginally thereafter. Coupling the degree of hydration with the portlandite content measured from thermal analysis indicate that C/S ratio of C–S–H decreases with increasing w/c. There is a clear increase in the portlandite content with increasing w/c, even though the degree of hydration is unchanged, due to the variations in C/S ratio of C–S–H. On the other hand, when C3S is initially cured at a lower temperature (20°C) and then at a higher temperature (40°C), there is a significant increase in the reactivity even until 28 days and vice versa. These experimental results were explained using the densified volumetric growth hypothesis, which assumes that hydration kinetics are dependent on the internal surface area of C–S–H.  相似文献   

6.
Early-age hydration of cement is enhanced by slightly soluble mineral additives (ie, fillers, such as quartz and limestone). However, few studies have attempted to systematically compare the effects of different fillers on cementitious hydration rates, and none have quantified such effects using fillers with comparable, size-classified particle size distributions (PSDs). This study examines the influence of size-classified fillers [ie, limestone (CaCO3), quartz (SiO2), corundum (Al2O3), and rutile (TiO2)] on early-age hydration kinetics of tricalcium silicate (C3S) using a combination of experimental methods, while also employing a modified phase boundary and nucleation and growth model. In prior studies, wherein fillers with broad PSDs were used, it has been reported that between quartz and limestone, the latter is a superior filler due to its ability to partake in anion-exchange reactions with C-S-H. Contrary to prior investigations, this study shows that when size-classified and area matched fillers are used—which, essentially, eliminate degrees of freedom associated with surface area and agglomeration of filler particulates—the filler effect of quartz is broadly similar to that of limestone as well as rutile. Results also show that unlike quartz, limestone, and rutile—which enhance C3S hydration kinetics—corundum suppresses hydration of C3S during the first several hours after mixing. Such deceleration in C3S hydration kinetics is attributed to the adsorption of aluminate anions—released from corundum's dissolution—onto anhydrous particulates’ surfaces, which impedes both the dissolution of C3S and heterogeneous nucleation of C-S-H.  相似文献   

7.
This study analyzed the behavior of two laboratory‐synthesized calcium silicates, C3S and C2S, after hydration in 8‐M NaOH and in water as a control. Two‐ and 28‐d mechanical strength values were determined and the products were characterized with XRD, TEM, and 29Si and 23Na MAS NMR. The results showed that hydrating C3S in a highly alkaline medium had no significant effect on the mechanical development of the material, whereas in C2S hydration, that medium hastened hydration substantially, impacting setting and hardening times. This finding has technological implications, given the low early‐age reactivity of dicalcium silicate under normal hydration conditions.  相似文献   

8.
Calcium silicate hydrates (C‐S‐H), the primary binding phase in concrete, is the most prominent physiochemical factor controlling the mechanical and chemical properties in the production of concrete. This paper reports the local‐binding structure and morphological details of C‐S‐H as determined by high‐resolution X‐ray spectromicroscopy. Hydrated tricalcium silicate (C3S) was used to determine the properties and role of the outer products (Op) of C3S. C‐S‐H with different molar ratios of Ca/Si, were synthesized (Syn‐CSH) to quantitatively evaluate the effect of silicate polymerization on Ca L and Si K edge of C‐S‐H. Near edge X‐ray absorption fine structure (NEXAFS) spectroscopy of Syn‐CSH showed no variation in peak positions and energy separation for CaLIII, II edge for the Ca/Si ratios investigated. Compared to Syn‐CSH, C3S, when hydrated for 17 d, had a similar local structure around Ca. Si K edge NEXAFS analysis on Syn‐CSH showed a tendency for the peak positions of both the Si K edge and the peak induced by multiple scattering to shift to higher energy levels. The results also indicated that the distance between the two peaks increased with a decrease of the Ca/Si ratio in Syn‐CSH. Silicate polymerization influenced the multiple scattering of distant shell atoms more than the binding energy of the core atoms. Op of C3S had a uniform and higher degree of silicate polymerization compared to the core area. The results imply that Op reduces the hydration process of C3S into the core area thereby playing a key role on the properties of concrete upon formation.  相似文献   

9.
Morphological details of calcium silicate hydrate (C–S–H) stemming from the hydration process of Portland cement (PC) phases are crucial for understanding the PC‐based systems but are still only partially known. Here we introduce the first soft X‐ray ptychographic imaging of tricalcium silicate (C3S) hydration products. The results are compared using both scanning transmission X‐ray and electron transmission microscopy data. The evidence shows that ptychography is a powerful method to visualize the details of outer and inner product C–S–H of fully hydrated C3S, which have fibrillar and an interglobular structure with average void sizes of 20 nm, respectively. The high‐resolution ptychrography image enables us to perform morphological quantification of C–S–H, and, for the first time, to possibly distinguish the contributions of inner and outer product C–S–H to the small angle scattering of cement paste. The results indicate that the outer product C–S–H is mainly responsible for the q?3 regime, whereas the inner product C–S–H transitions to a q?2 regime. Various hypotheses are discussed to explain these regimes.  相似文献   

10.
Alite (impure C3S) being the major and most reactive phase in ordinary portland cement has been studied extensively. This paper focuses on the mathematical modeling of new hypothesis developed, densified volumetric growth, applied to the main hydration peak in alite hydration. This hypothesis assumes a time and particle size‐dependent growth rate and densification rate of C–S–H controlled by its internal surface area. To test this hypothesis, a new microstructural modeling platform (Cementitious Reactions Simulator) has been developed. The model was used to calibrate and predict the isothermal calorimetric results from the literature and two sets of original experimental results with alite replaced with different replacement fractions of quartz, fly ash, and slag of different fineness. The model is able to capture and predict the effect of fineness and fillers without the need of varying the parameters for the particular set of simulations. The values of the parameters of simulation reflect the current experimental evidence from the literature and thus provide validation of the hypothesis which suggests that the main hydration period including deceleration period in the alite hydration is induced by the densification and reducing outer growth rate of C–S–H.  相似文献   

11.
Impure tricalcium silicate (C3S) in portland cement may contain various foreign ions. These ions can stabilize different polymorphs of C3S at room temperature and may affect its reactivity. In this paper, the effects of magnesium and zinc on the polymorph type, hydration kinetics, and the hydrate morphology of C3S were investigated. The pure C3S has the T1 structure while magnesium and zinc stabilize polymorphs M3 and T2/T3, respectively. The two elements have distinct effects on the hydration kinetics. Zinc increases the maximum heat released. Magnesium increases the hydration peak width. The C–S–H morphology is modified, leading to longer needles in the presence of zinc and thicker needles in the presence of magnesium. Zinc is incorporated into C–S–H, while magnesium is only incorporated slightly, if at all, but rather seems to inhibit nucleation. Implementing experimentally measured parameters for C–S–H nucleation and growth in the μic hydration model captured well the observed changes in hydration kinetics. This supports C–S–H nucleation and growth to be rate controlling in the hydration of C3S.  相似文献   

12.
Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within limits) of the C3S content of the suspension.  相似文献   

13.
New polymer colloids based on the saccharide monomer, using of 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were prepared by semicontinuous emulsion polymerization, a widely used industrial process. The copolymerization of 3‐MDG and butyl acrylate (BA), by the monomer‐addition technique, at 70°C, using sodium persulfate (Na2S2O8) as an initiator, was investigated. The influence of some reaction parameters, such as the type and concentration of the surfactants as well as the monomer addition rate (Rm) on the polymerization rate (Rp), the colloidal properties, and the stability of the latexes, was studied. It was found that under starved‐feed conditions the polymerization rate and the particle size (D) increased with an increasing rate of monomer addition. The weight‐average molecular weight (M w) also increased by enhancing Rm and a narrower molecular weight distribution was obtained. Furthermore, the type and the concentration of the surfactants strongly influenced the particle size and its distribution. The effect of the seed stage on the particle size and its distribution was also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2091–2102, 2003  相似文献   

14.
Simulations of tricalcium silicate (C3S) hydration using a kinetic cellular automaton program, HydratiCA, indicate that the net rate depends both on C3S dissolution and on hydration product growth. Neither process can be considered the sole rate-controlling step because the solution remains significantly undersaturated with respect to C3S yet significantly supersaturated with respect to calcium silicate hydrate (C–S–H). The reaction rate peak is attributed to increasing coverage of C3S by C–S–H, which reduces both the dissolution rate and the supersaturation of C–S–H. This supersaturation dependence is included in a generalized boundary nucleation and growth model to describe the kinetics without requiring significant impingement of products on separate cement grains. The latter point explains the observation that paste hydration rates are insensitive to water/cement ratio. The simulations indicate that the product layer on C3S remains permeable; no transition to diffusion control is indicated, even long after the rate peak.  相似文献   

15.
A new method for the determination of the structure of silicate anions, formed during hydration of tricalciumsilicate Ca3SiO5 (C3S), is presented. High resolution solid state 29Si NMR spectra of C3S and its hydration products, formed during selected reaction times from 6 hours to 130 days, provide the kinetics of formation of the end groups and of the middle groups in silicate chains.  相似文献   

16.
The focus of this study is to elucidate the role of particle size distribution (PSD) of metakaolin (MK) on hydration kinetics of tricalcium silicate (C3S–T1) pastes. Investigations were carried out utilizing both physical experiments and phase boundary nucleation and growth (pBNG) simulations. [C3S + MK] pastes, prepared using 8%mass or 30%mass MK, were investigated. Three different PSDs of MK were used: fine MK, with particulate sizes <20 µm; intermediate MK, with particulate sizes between 20 and 32 µm; and coarse MK, with particulate sizes >32 µm. Results show that the correlation between specific surface area (SSA) of MK's particulates and the consequent alteration in hydration behavior of C3S in first 72 hours is nonlinear and nonmonotonic. At low replacement of C3S (ie, at 8% mass), fine MK, and, to some extent, coarse MK act as fillers, and facilitate additional nucleation and growth of calcium silicate hydrate (C–S–H). When C3S replacement increases to 30% mass, the filler effects of both fine and coarse MK are reversed, leading to suppression of C–S–H nucleation and growth. Such reversal of filler effect is also observed in the case of intermediate MK; but unlike the other PSDs, the intermediate MK shows reversal at both low and high replacement levels. This is due to the ability of intermediate MK to dissolve rapidly—with faster kinetics compared to both coarse and fine MK—which results in faster release of aluminate [Al(OH)4] ions in the solution. The aluminate ions adsorb onto C3S and MK particulates and suppress C3S hydration by blocking C3S dissolution sites and C–S–H nucleation sites on the substrates’ surfaces and suppressing the post-nucleation growth of C–S–H. Overall, the results suggest that grinding-based enhancement in SSA of MK particulates does not necessarily enhance early-age hydration of C3S.  相似文献   

17.
A quasi‐amorphous low‐calcium‐silicate hydraulic binder, with an overall CaO/SiO2 (C/S) molar ratio of 1.1, was produced. This cementitious material was then hydrated with aqueous solutions containing 3 wt% alkalis (either NaOH, Na2CO3 or Na2SiO3). The evolution of the hydration processes of the samples were monitored by compressive strength testing, XRD, FTIR, 29Si and 27Al MAS NMR, isothermal calorimetry and TGA. It was found that the nearly exclusive hydration product formed was a C‐S‐H phase with a semi‐crystalline structure. More importantly, the paste prepared with the Na2SiO3 solution developed compressive strength values similar to those of ordinary portland cements (OPC) with faster early age kinetics. In addition, the isothermal calorimetry results indicated that these new hydraulic binders present much lower heat of hydration values compared with a traditional OPC. The results presented here open the possibility of producing cement with a compressive strength comparable to that of OPC but with lower CO2 emissions during the production process and with lower hydration heat related problems during the production of concrete structures.  相似文献   

18.
The study of hydration kinetics by in‐situ X‐ray powder diffraction can provide fundamental details on the time evolution of the phase assemblage in hydrating cement pastes. The main limit of the technique is the lack of quantitative information about the amount of C–S–H and unbound water, which cannot be measured directly by conventional quantitative phase analysis procedures based on X‐ray diffraction, due to their X‐ray amorphous nature. Here, a mass balance algorithm, which can be used to determine the amount of both C–S–H and capillary water, is presented and compared with methods based on standards. This method can also provide information about the stoichiometry of C–S–H formed by the reaction of C3S, hydrated in the presence of gypsum, suggesting the incorporation of 0.3 mol of sulfate per mole of C–S–H precipitated. In addition, the results show a significant increase in the rate of C3S hydration, when gypsum is added to the system.  相似文献   

19.
Poly(ethylene terephthalate) (PET)/Cloisite 30B (C30B) nanocomposites of different organoclay concentrations were prepared using a water‐assisted extrusion process. The reduction of the molecular weight (Mw) of the PET matrix, caused by hydrolysis during water‐assisted extrusion, was compensated by subsequent solid‐state polymerization (SSP). Viscometry, titration, rheological, and dynamic scanning calorimetry measurements were used to analyze the samples from SSP. The weight‐average molecular weight (Mw) of PET increased significantly through SSP. PET nanocomposites exhibited solid‐like rheological behavior, and the complex viscosity at high frequencies was scaled with the Mw of PET. The Maron–Pierce model was used to evaluate the Mw of PET in the nanocomposites before and after SSP. It was found that the extent and the rate of the SSP reaction in nanocomposites were lower than those for the neat PETs, due to the barrier effect of clay platelets. Consequently, the SSP rate of PET increased with decreasing particle size for the neat PET and PET nanocomposites. The effect of the Mw of PET on the crystallization temperature, crystallinity, and the half‐time, t½, of nonisothermal crystallization was also investigated. With increasing Mw of PET, t½ increased, whereas Tc and Xc decreased. POLYM. ENG. SCI., 54:2925–2937, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
Tricalcium silicate (C3S) and dicalcium silicate (C2S) are the main components related with the hydration process of mineral trioxide aggregates (MTAs) for endodontic materials. In this study, we investigate the influence of different ratios of C3S and C2S in a series of MTA samples with (100-x)C3S-xC2S-18ZrO2 (= 0, 10, 15, 34, and 100) on their physical and chemical characteristics, hydration process, and microhardness properties. The chemical compositional properties of different samples are measured using X-ray diffraction, X-ray photoelectron spectrometry, and scanning electron microscopy. The physical and microhardness properties are also investigated after the standard hydration process (ISO 6876:2021). Generally, the sample with higher C3S ratio induces the faster hydration, which results in decreased fluidity as well as shorter working and setting times. The microhardness generally decreases with larger C3S ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号