首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerium‐doped Gd3(Al,Ga)5O12 powders have been synthesized with ultrasonic‐assisted chemical coprecipitation method (UACC), and the traditional chemical coprecipitation method (CC) was also employed for comparison. The structure and morphology of powders were investigated by XRD, BET, and TEM. The powders were used for preparing ceramics at different temperatures. The specific surface areas of UACC and CC powders calcined at 800°C were 66 and 29 m2/g, respectively. Ceramics derived from UACC and CC powders were sintered at 1600°C, and the densities are 6.67 and 6.48 g/cm3, respectively. UACC is an attractive method for synthesizing GAGG powder for preparing ceramic scintillators.  相似文献   

2.
Z. Ding  R. Guo  W. Guo  Z. Liu  G. Cai  H. Jiang 《Fuel Cells》2016,16(2):252-257
A novel K2NiF4‐type oxide Pr1.7Sr0.3CuO4 (PSCu) is studied to obtain its electrochemical properties as the cathode for intermediate‐temperature solid oxide fuel cells (IT‐SOFCs). The PSCu cathode powder and Ce0.8Sm0.2O1.9 (SDC) electrolyte powder were synthesized by sol‐gel method and glycine‐nitrate method, respectively. The crystal structure of PSCu powder and PSCu‐SDC composite powder were identified with X‐ray diffraction (XRD). It is shown that PSCu belongs to tetragonal K2NiF4‐type and has good chemical compatibility with SDC. The thermal expansion coefficient (TEC) of PSCu is close to that of SDC. The conductivity of PSCu tested with four‐probe method exhibits a semiconductor‐pseudometal transformation at 400–450 °C, where the maximum conductivity of 103.6 S cm−1 is obtained. The polarization test indicates the area specific resistance (ASR) of PSCu decreases with increasing temperature, reaching 0.11 Ω cm2 at 800 °C. The activation energy of oxygen reduction reaction during 600–800 °C is 1.19 eV. The single fuel cell performance test reveals the open circuit voltage (OCV) and resistivity of PSCu reduce with increasing temperature, but the power density ascends with increasing temperature. The maximal power density is 243 mW cm−2 at 800 °C, and the corresponding current density and OCV are 633 mA cm−2 and 0.77 V, respectively.  相似文献   

3.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

4.
Mesoporous alumina (MA)was synthesized by sol–gel based evaporation‐induced self‐assembly process using aluminum isopropoxide as alumina source in the presence of three different types of triblock copolymers (TBCs), F68, F127, and L64. The role of different TBCs as surfactants on thermal, crystallization, textural, and microstructural properties of the alumina powders was studied. To understand the effects of different copolymers, the adsorption efficiency of the samples for Congo red (CR) was studied. For all the surfactants, the XRD results showed the stability of γ‐Al2O3 phase up to 1000°C for 1 h dwell time. A maximum value (431.8 m2/g) of Brunauer–Emmet–Teller surface area was obtained for the 400°C‐treated powder prepared from F68 surfactant. The transmission electron microscopy micrograph exhibited worm‐like mesoporous structures of the 400°C‐treated powders prepared from F68 and F127 surfactants. The adsorption performance for CR of the 400°C‐treated powders for different surfactants was in the order of F68 > F127 > L64. A tentative mechanism was illustrated to understand the roles of different block copolymers on the properties of the prepared MA.  相似文献   

5.
Two series of blends, O‐PP15 and O‐PP35, were prepared by mixing polypropylene (PP), luminescent powders (SrAl2O4: Eu2+, Dy3+) of 15 and 35 μm average particle diameter, and hydrophobic dispersant at about 190°C in the Brabender mixer. The effect of amounts and diameter of luminescent powders on the physical properties of PP material were discussed herein. The luminescence and afterglow time tests indicated that the initial luminescence of all blends increased with the luminescent powders amounts. O‐PP35 blends showed lower afterglow luminance than O‐PP15 blends at low luminescent powder amounts. The melting and crystallization temperatures of the blends appeared at 152–168°C and 87–103°C, respectively. The blends displayed peaks attributable to a α crystal structure at 2θ = 18°–19°. The β crystal structure was only evident from its characteristic 2θ peak at 15°–16° in the WAXD pattern of the O‐PP35 blends with high luminescent powder amounts. All of the blends had lower tensile strengths. However, the improvement in the luminescent powder distribution was evident from the SEM images after adding hydrophobic dispersant. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Aiming to manufacture low‐cost silicon nitride components, a low‐cost β powder was chosen as a raw powder and low‐temperature sintering at 1550–1600°C under atmospheric pressure nitrogen was carried out. The silicon nitride from β powder with 5 wt% Y2O3 and 5 wt% MgAl2O4 additives and sintered at 1600°C for 8 h was successfully densified, and it exhibited moderate strength and toughness of 553 MPa ± 22 and 3.5 MPa m1/2, respectively. The results indicate that the low‐temperature sintering of the low‐cost β powder has a potential to reduce cost of components.  相似文献   

7.
Crack‐free γ‐Al2O3‐coated glass‐bonded SiC membranes were successfully prepared using a simple heat‐treatment and dip‐coating process at a temperature as low as 850°C in air. The changes in the porosity, flexural strength, flux, and oil rejection rate of the membranes were investigated while changing the initial SiC particle size. Larger SiC particles led to bigger pores, resulting in higher flux in the oily water and a lower oil rejection rate. The SiC membranes with a support prepared from 10 μm SiC powder showed an exceptionally high oil rejection rate (99.9%) with a feed oil concentration of 600 mg/L at an applied pressure of 101 kPa. The typical porosity, flexural strength, steady state flux, and oil rejection rate of the alumina‐coated SiC membrane were ~45%, ~81 MPa, 1.78×10?5 mm?2s?1, and 99.9%, respectively.  相似文献   

8.
A gas‐tight yttria‐stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO–YSZ anode substrates by a binder‐assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 μm. La0.8Sr0.2MnO3 (LSM)–YSZ was applied to cathode using a screen‐print technique and the single fuel cells were tested in a temperature range from 600 to 800 °C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 °C were 0.13, 0.44, and 1.1 W cm–2, respectively.  相似文献   

9.
Two new methods for preparing submicrometer powders of M2(WO4)3, M = Sc, In, and Al via combustion synthesis are reported. Stoichiometric combinations of trivalent metal nitrates, ammonium metatungstate, and either urea or carbohydrazide as the fuel were reacted at 550°C, producing amorphous or poorly crystallized powders with an average particle size ranging from 164 to 350 nm. Calcining the powders at 800°C for 1 h produced well‐crystallized, phase‐pure powders with an average particle size ranging from 210 to 711 nm. Powders sintered at 1000°C for 14 h resulted in pellets that were 87%–95% of the theoretical density, which is notably higher than typically obtained from powders prepared by solid‐state reaction. Whereas there was little difference in the microstructure of Al2(WO4)3 pellets prepared with the two different powders, the carbohydrazide‐derived powders resulted in In2(WO4)3 and Sc2(WO4)3 pellets with a larger grain size than those prepared with urea‐derived powders. The electrical conductivity of the sintered pellets, while comparable to that reported for polycrystalline M2(WO4)3 prepared by solid‐state reaction, was strongly influenced by grain‐boundary effects.  相似文献   

10.
Nanocrystalline NbB2 powders were successfully prepared by borothermal reduction in molten salt at 800°C–1000°C. Due to the more homogeneous mixing and more rapid diffusion of species in the liquid state than in the solid state, the synthesis temperature of pure NbB2 phase was greatly decreased by the presence of molten NaCl/KCl salt. The NbB2 powders synthesized at 1000°C had the largest specific surface area of 27.09 m2/g and the lowest equivalent average particle size of 32 nm, respectively.  相似文献   

11.
Cu(In,Ga)Se2 films doped with different contents of silver ions (Ag+) were successfully prepared using nonvacuum spin coating followed by selenization at elevated temperatures. Increasing the Ag+ ion content increased the lattice parameters of the chalcopyrite structure, and shifted the A1 mode in the Raman signals to low frequencies. The band gaps of the prepared (Ag,Cu)(In,Ga)Se2 (ACIGS) films were considerably increased, thereby increasing the open‐circuit voltage (Voc) of the solar cells. As Ag+ ion content increased, the microstructures of ACIGS films became densified because the formed (Cu,Ag)2In alloy phase with a low melting point facilitated liquid‐phase sintering. The evaporation of selenium species was correspondingly suppressed in the films during selenization, thereby reducing the selenium vacancies. The improvement in the microstructures and the defects of ACIGS films increased short‐circuit current (Jsc) and fill factor of the solar cells. The spectral response of the solar cells was also enhanced remarkably. This study demonstrated that incorporation of Ag+ ions into Cu(In,Ga)Se2 films substantially improved the efficiency of the solar cells.  相似文献   

12.
A CO2 expanded carbonation technique is proposed for direct synthesis of alumina powders that does not require structure directing substances or templates. Mesoporous amorphous flower-like alumina was synthesized at relatively low volume expansions (lower ethanol to water volume ratio), whereas mesoporous crystalline honey-comb-like alumina was synthesized at high volume expansions. The alumina powders exhibited high surface area and pore size with small crystallite sizes. The alumina structures were stable from 400 to 800 °C. Experimental tests showed that the alumina powders could catalytically convert cyclohexanone to ɛ-caprolactone efficiently. The use of the calcined catalysts (at 400 and 800 °C; flower-like alumina) at equal ethanol to water volume ratio avoids the usual and inevitable hydrolysis of ɛ-caprolactone to ɛ-hydroxyhexanoic acid. The catalyst was recyclable and stable for up to five reaction cycles.  相似文献   

13.
A novel molten‐salt and microwave coassisted carbothermal reduction (termed as MSM‐CTR) method was developed to prepare ZrB2 powders from raw materials of ZrO2, B4C, and amorphous carbon. The results indicated that the carbothermal reduction reaction for synthesizing ZrB2 was initiated at the temperature as low as 1150°C, and phase pure ZrB2 powders were obtained after only 20 min at 1200°C, which were significantly milder than that of the conventional CTR method as well as the modified CTR method even using active metal as additional reducing agents. More interestingly, the as‐obtained ZrB2 powders consisted of well‐defined single‐crystalline nanorods, which had diameters of 40–80 nm and high aspect ratios of >10. These results demonstrated that the MSM‐CTR is a simple and efficient route for preparation of high‐quality ZrB2 powders.  相似文献   

14.
Y. Ling  L. Zhao  X. Liu  B. Lin 《Fuel Cells》2015,15(2):384-389
Layered perovskite oxide YBaCuCoO5+x (YBCC) was synthesized by an EDTA‐citrate complexation process and was investigated as a novel cathode for proton‐conducting intermediate temperature solid oxide fuel cells (IT‐SOFCs). The thermal expansion coefficient (TEC) of YBCC was 15.3 × 10−6 K−1 and the electrical conductivity presented a semiconductor‐like behavior with the maximum value of 93.03 Scm−1 at 800 °C. Based on the defect chemistry analysis, the electrical conductivity gradually decreases by the introduction of Cu into Co sites of YBaCo2O5+x and the conductor mechanism can transform from the metallic‐like behavior to the semiconductor‐like behavior. Thin proton‐conducting (BaZr0.1Ce0.7Y0.1Yb0.1O3–δ) BZCYYb electrolyte and NiO–BZCYYb anode functional layer were prepared over porous anode substrates composed of NiO–BZCYYb by a one‐step dry‐pressing/co‐firing process. Laboratory‐sized quad‐layer cells of NiO‐BZCYYb / NiO‐BZCYYb / BZCYYb / YBCC with a 20 μm‐thick BZCYYb electrolyte membrane exhibited the maximum power density as high as 435 mW cm−2 with an open‐circuit potential (OCV) of 0.99 V and a low interfacial polarization resistance of 0.151 Ωcm2 at 700 °C. The experimental results have indicated that the layered perovskite oxide YBCC can be a cathode candidate for utilization as proton‐conducting IT‐SOFCs.  相似文献   

15.
ZrB2–SiC nano‐powder mixture was synthesized using ZrSi2 source material and a modified spark plasma sintering apparatus. The particle size of ZrB2 and SiC was about 80 and 20 nm, respectively. The molecular‐level homogeneity of Zr/Si source and fast heating/cooling rate by SPS caused the formation of homogeneously intermixed nano‐powders. A strong exothermal reaction occurred at around 860°C, which caused strong agglomeration and growth of the synthesized powder mixture. The rapid reaction could be controlled by adding 20 wt% of NaCl, which acted as an inert filler.  相似文献   

16.
Alumina encapsulated molybdenum silicide (MoSi2) intermetallic particles were synthesized using a simple precipitation method followed by calcining at temperatures of 800°C–1000°C, to prevent the premature oxidation of MoSi2 at high temperatures. The shell composition and the influence of the calcining temperature on microcapsule integrity were investigated by means of X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The results demonstrate that the composition and the mechanical stability of the alumina shell can be tuned by the annealing temperature. After calcining at 800°C and 850°C the alumina shell remains intact. Calcining at higher temperature promotes the formation of mullite, which leads to cracking of the shell. However, when annealed at 1000°C for 24 h these cracks were filled with mullite and preserved the molybdenum silicide particles. Furthermore, the mechanical stability of the shell was improved by applying an intermediate calcining treatment at 450°C prior to the annealing process at 1000°C.  相似文献   

17.
The effects of selenization temperatures on the phase formation and the photovoltaic properties of silver‐ion‐doped Cu(In,Ga)Se2 (ACIGS) films were investigated. Cu2?xSe phase coexisted with CuInSe2 phase in the films as the selenization temperature was relatively low. Increasing the selenization temperatures promoted the formation of the chalcopyrite phase and increased the grain size. Upon increasing the selenization temperature to 600°C, single‐phased ACIGS films with a grain size of 2.1–2.2 μm were successfully synthesized. The incorporation of Ag+ and Ga3+ ions into CuInSe2 during the phase formation of ACIGS elevated the band gaps of the films, thereby improving the open‐circuit voltage (Voc) of the solar cells. The grain growth on raising the selenization temperatures also elevated the short‐circuit current (Jsc) values owing to the suppression of the electron‐hole recombination at grain boundaries. In the diode analysis, the facilitated phase formation suppressed the shunt path, decreasing the values of the diode factor (A), shunt conductance (G), and saturated current (Jo), thereby improving the cell performance. In this study, ACIGS solar cells with an efficiency of 7.21% prepared via the nonvacuum process were first demonstrated.  相似文献   

18.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   

19.
High‐energy shaker milling of hexagonal boron nitride (hBN) powders was used to produce powders rich in sp3 bonding. The powders contained up to 68% sp3 bonding and were found to nucleate nanosize cBN grains during consolidation at 5.5 GPa and 1400°C. The effect of hBN starting particle size, milling time, and powder‐to‐milling ball ratio were studied. The amount of sp3 bonding for milled hBN powders was determined, using 11B solid‐state NMR. The milled material was also analyzed by XRD, Raman spectroscopy, and HRTEM. The results indicate that the material has a nanosized microstructure comprised of a disordered hBN matrix and cBN nuclei in the form of sp3‐rich domains. Eight different milled powders were produced and consolidated at pressures of either 5.5 or 6.5 GPa and temperatures of either 1400°C or 1450°C into 12 mm diameter and 5 mm thick pellets. Consolidated pellets formed from milled hBN with 68% sp3 bonding had Vickers hardness of 42 ± 1 GPa and fracture toughness 3.8 ± 0.1 MPa.m1/2. Vickers hardness of 49 ± 1 GPa and fracture toughness of 4.6 ± 0.1 MPa.m1/2 was achieved with a precursor that contained milled hBN and 50 vol. % of 0.5 μm diameter cBN crystals.  相似文献   

20.
Acceptor‐doped BaTiO3 powders of formula: BaTi1?xHoxO3?x/2?δ/2: x = 0.0001, 0.001, 0.01, 0.03, and 0.07, were prepared by sol‐gel synthesis, fired at 800°C–1500°C and either quenched or slow‐cooled to room temperature. Electrical properties of ceramics depended on firing conditions, Ho content, and cooling rate. Pellets of all x values fired at 800°C–1000°C were insulating and, from the presence of OH bands in the IR spectra, charge balance appeared to involve co‐doping of Ho3+ and H+ ions without necessity for oxygen vacancy creation. At higher firing temperatures, OH bands were absent. Pellets fired at 1400°C in air and slow cooled were insulating for both low x (0.0001) and high x (0.07) but at intermediate x (0.001 and 0.01) passed through a resistivity minimum of 20–30 Ω cm at room temperature, attributed to the presence of Ti3+ ions; it is suggested that, for these dilute Ho contents, each oxygen vacancy is charge compensated by one Ho3+ and one Ti3+ ion. At higher x, charge compensation is by Ho3+ ions and samples are insulating. A second, more general mechanism to generate Ti3+ ions, and a modest level of semiconductivity, involves reversible oxygen loss at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号