首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
New binary system (1?x) PbTiO3?xBi(Ni1/2Zr1/2)O3 (PT–100x BNZ) with ≤ 0.45 were synthesized via solid‐state reaction route. A morphotropic phase boundary (MPB) was identified around x = 0.40 by X‐ray diffraction (XRD) method. The ceramics with MPB composition exhibit enhanced ferroelectric properties. A large piezoelectric coefficient (d33) up to 400 pC/N was obtained for the PT–40BNZ, which is comparable with the PbTiO3–BiScO3 (PT–BS, 450 pC/N).The frequency dependence of dielectric permittivity of PT–40BNZ shows characteristic of a strong relaxor feature and a transition temperature around 290°C (1 MHz). Temperature effect on the unipolar strain was also investigated. The present system with high d33 is a competitive piezoelectric material, as no expensive oxide is used here compared with the PT–BS.  相似文献   

2.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

3.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

4.
New lead‐free perovskite solid solution ceramics of (1 ? x)(Bi1/2Na1/2)TiO3xBa(Ni1/2Nb1/2)O3[(1?x)BNT–xBNN,= 0.02–0.06) were prepared and their dielectric, ferroelectric, piezoelectric, and electromechanical properties were investigated as a function of the BNN content. The X‐ray diffraction results indicated that the addition of BNN has induced a morphotropic phase transformation from rhombohedral to pseudocubic symmetry approximately at = 0.045, accompanying an evolution of dielectric relaxor behavior as characterized by enhanced dielectric diffuseness and frequency dispersion. In the proximity of the ferroelectric rhombohedral and pseudocubic phase coexistence zone, the = 0.045 ceramics exhibited optimal piezoelectric and electromechanical coupling properties of d33~121 pC/N and kp~0.27 owing to decreased energy barriers for polarization switching. However, further addition of BNN could cause a decrease in freezing temperatures of polar nanoregions till the coexistence of nonergodic and ergodic relaxor phases occurred near room temperature, especially for the = 0.05 sample which has negligible negative strains and thus show the maximum electrostrain of 0.3% under an external electric field of 7 kV/mm, but almost vanished piezoelectric properties. This was attributed to the fact that the induced long‐range ferroelectric order could reversibly switch back to its original ergodic state upon removal of external electric fields.  相似文献   

5.
To explore new relaxor‐PbTiO3 systems for high‐power and high‐temperature electromechanical applications, a ternary ferroelectric ceramic system of Pb(Lu1/2Nb1/2)O3–Pb(In1/2Nb1/2)O3–PbTiO3 (PLN–PIN–PT) have been investigated. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the as‐prepared PLN–PIN–PT ceramics near the morphotropic phase boundary (MPB) were characterized. A high rhombohedral‐tetragonal phase transition temperature TR‐T of 165°C and a high Curie temperature TC of 345°C, together with a good piezoelectric coefficient d33 of 420 pC/N, were obtained in 0.38PLN–0.20PIN–0.42PT ceramics. Furthermore, for (0.8?x)PLN–0.2PIN–xPT ceramics, the temperature‐dependent piezoelectric coefficients, coercive fields and electric‐field‐induced strains were further studied. At 175°C, their coercive fields were found to be above 9.5 kV/cm, which is higher than that of PMN–PT and soft P5H ceramics at room temperature, indicating PLN–PIN–PT ceramics to be one of the promising candidates in piezoelectric applications under high‐driven fields. The results presented here could benefit the development of relaxor‐PbTiO3 with enhanced phase transition temperatures and coercive fields.  相似文献   

6.
A novel lead‐free relaxor ferroelectric ceramic of (0.67?x)BiFeO3–0.33BaTiO3xBa(Mg1/3Nb2/3)O3 [(0.67?x)BF–0.33BT–xBMN,= 0–0.1] was prepared by a solid‐state reaction method. A relatively high maximum polarization Pmax of 38 μC/cm2 and a low remanent polarization Pr of 5.7 μC/cm2 were attained under 12.5 kV/mm in the = 0.06 sample, leading to an excellent energy‐storage density of W ~1.56 J/cm3 and a moderate energy‐storage efficiency of η ~75%. Moreover, a good temperature stability of the energy storage was obtained in the = 0.06 sample from 25°C to 190°C. The achievement of these characteristics was basically attributed to an electric field induced reversible ergodic to ferroelectric phase transition owing to similar free energies near a critical freezing temperature. The results indicate that the (0.67?x)BF–0.33BT–xBMN lead‐free realxor ferroelectric ceramic could be a promising dielectric material for energy‐storage capacitors.  相似文献   

7.
In the high‐temperature ternary perovskite piezoelectric system xPbTiO3yBiScO3zBi(Ni1/2,Ti1/2)O3 (PT–BS–BNiT), the addition of bismuth to the A site and nickel to the B site leads to compositions that exhibit diffuse relaxor‐like behavior. For these, depolarization temperature, not Curie point, is the critical value of temperature. Depolarization temperature (Td) is defined as the temperature at which the steepest loss in polarization occurs. This temperature is observed in poled materials through two different methods: loss tangent measurements and in situ d33. Across the ternary system, multiple dielectric anomalies occurred which was observed in dielectric tests where the dielectric peak broadens and becomes frequency dependent as BNiT content increased. For different compositions, the value of Td ranged between 275°C–375°C. Values for the piezoelectric coefficient increased with temperature up to d33 = 1000 pC/N during in situ d33. High temperature (up to 190°C) and high field (up to 40 kV/cm) were also applied to test ferroelectric properties in these regimes.  相似文献   

8.
In this article, perovskite‐structured BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 (BF–BZT–PT) ternary solid solutions were prepared with traditional solid‐state reaction method and demonstrated to exhibit a coexistent phase boundary (CPB) with Curie temperature of TC~700°C in the form of ceramics with microstructure grain size of several micron. It was found that those CPB ceramics fabricated with conventional electroceramic processing are mechanically and electrically robust and can be poled to set a high piezoelectricity for the ceramics prepared with multiple calcinations and sintering temperature around 750°C. A high piezoelectric property of TC = 560°C, d33 = 30 pC/N, ε33T0 = 302, and tanδ = 0.02 was obtained here for the CPB 0.53BF–0.15BZT–0.32PT ceramics with average grain size of about 0.3 μm. Primary experimental investigations found that the enhanced piezoelectric response and reduced ferroelectric Curie temperature are closely associated with the small grain size of microstructure feature, which induces lattice structural changes of increased amount ratio of rhombohedral‐to‐tetragonal phase accompanying with decreased tetragonality in the CPB ceramics. Taking advantage of structural phase boundary feature like the Pb(Zr,Ti)O3 systems, through adjusting composition and microstructure grain size, the CPB BF–BZT–PT ceramics is a potential candidate to exhibit better piezoelectric properties than the commercial K‐15 Aurivillius‐type bismuth titanate ceramics. Our essay is anticipated to excite new designs of high–temperature, high–performance, perovskite‐structured, ferroelectric piezoceramics and extend their application fields of piezoelectric transducers.  相似文献   

9.
Lead free piezoelectric ceramics of Y3+‐doped Ba1?xCaxZr0.07Ti0.93O3 with = 0.05, 0.10, and 0.15 were prepared. Composition and temperature‐dependent structural phase evolution and electrical properties of as‐prepared ceramics were studied systematically by X‐ray diffraction, Raman spectroscopy, impedance analyzer, ferroelectric test system, and unipolar strain measurement. Composition with = 0.10 performs a good piezoelectric constant d33 of 363 pC/N, coercive field Ec of 257 V/mm, remanent polarization Pr of 14.5 μC/cm2, and a Curie temperature Tm of 109°C. High‐resolution X‐ray diffraction was introduced to indicate presence of orthorhombic phase. Converse piezoelectric constant d33* of = 0.10 composition performed better temperature stability in the range from 50°C to 110°C. That means decreasing orthorhombic–tetragonal phase transition temperature could be an effective way to enlarge its operating temperature range.  相似文献   

10.
Perovskite solid solution ceramics of (1 ? x)BiFeO3xBaTiO3 (1 ? x)BF–xBT, 0.2 ≤ x ≤ 0.45) with high electrical resistivity were prepared by solid‐state reaction method. Actual ferroelectric hysteresis loops and temperature dependence of dielectric constant of the ceramics were obtained. Ceramics of 0.7BF–0.3BT with small rhombohedral distortion show highest remnant polarization (Pr = 26.0 μC/cm2) and piezoelectric coefficient (d33 = 134 pC/N). Compositions with pseudo‐cubic symmetry (intermediate phases) show relaxor‐like dielectric anomaly. The values of Pr and d33 decrease with increasing BT content, from 24.8 μC/cm2 and 104 pC/N for 0.65BF–0.35BT to 8.2 μC/cm2 and 5 pC/N for 0.55BF–0.45BT.  相似文献   

11.
The 0.72Bi(Fe1?xAlx)O3–0.28BaTiO3 (= 0, 0.01, 0.03, 0.05, and 0.07, abbreviated as BFAx–BT) lead‐free high‐temperature ceramics were prepared by the conventional ceramic processing. Systematic investigation on the microstructures, crystalline structures, dielectric and piezoelectric properties, and high‐temperature stability of piezoelectric properties was carried out. The crystalline structures of BFAx–BT ceramics evolve from rhombohedral structure with x < 0.01 to the coexistence of rhombohedral structure and pseudocubic phases with ≈ 0.01, finally to pseudocubic phases when x > 0.03. Remarkably high‐temperature stability with near‐zero temperature coefficient of piezoelectric properties (TCkp), together with improved piezoelectric properties has been achieved for = 0.01 BFAx–BT ceramics. The BFAx–BT(= 0.01) ceramics simultaneously show the excellent piezoelectric properties of d33 = 151 pC/N, kp = 0.31 and super‐high‐temperature stability of Td = 420°C, TCkp = 1 × 10?4. It is considered that the observed strong piezoelectricity and remarkably high‐temperature stability should be ascribed to the phase coexistence of rhombohedral and pseudocubic phases. The rhombohedral phases have a positive TCkp value and the pseudocubic phases possess a negative TCkp value. Thus, the TCkp value of BFAx–BT ceramics can be tuned by composition of x.  相似文献   

12.
Lead‐free BNT‐based piezoceramics, (1?x)Bi0.5Na0.5TiO3xBi(Mg0.5Ti0.5)O3 [(1?x)BNT–xBMT] (0.00 ≤  0.06) binary system, were synthesized using a conventional ceramic fabrication method. Effect of Bi(Mg0.5Ti0.5)O3 (BMT) substitution on room temperature (RT) crystal structure, and temperature dependence of electric properties were investigated. The XRD indicates that a pure perovskite phase is formed. The introduction of BMT decreases EC of BNT from 7.3 to 4.0 kV/mm, and increases d33 from 58 pC/N to 110 pC/N for the = 0.05. The system shows a typical ferroelectric (FE) polarization loop P(E) and butterfly bipolar strain‐electric S(E) curve at RT. For the composition of 0.95BNT–0.05BMT antiferroelectric (AFE) phase appears near 80°C, characterized by a constricted P(E) loop and altered bipolar S(E) butterfly, and gradually prevails with increasing temperature. Temperature dependence of dielectric constant shows that TC increases from 310°C for pure BNT to 352°C for the = 0.05. The results indicate that the piezoelectric properties of BNT have been improved by means of Bi(Mg0.5Ti0.5)O3 substitution.  相似文献   

13.
The properties of relaxor ceramics in the compositional series (1?x)K0.5Bi0.5TiO3xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative permittivity, decreased from 380°C at = 0.0 to below room temperature for > 0.7. Compositions = 0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33 piezoelectric charge coefficient, 130 pC/N, and strain, 0.14%, occurred at = 0.1. Piezoelectric properties of = 0.1 were retained after thermal cycling from room temperature to 220°C, consistent with results from high‐temperature X‐ray diffraction indicating a transition to single‐phase cubic at ~300°C.  相似文献   

14.
In this work, we fabricated the (1‐x)BiFeO3xBaTiO3+y‰ mol CuO ceramics by the modified thermal quenching technique. The pure perovskite phase was formed and a morphotropic phase boundary (MPB) was observed in the ceramics with = 0.30‐0.33. The addition of CuO can significantly enhance the density of the BiFeO3‐BaTiO3 material. Importantly, an enhanced piezoelectric constant (d33=165 pC/N), a large electric‐field‐induced strain (?S = 0.54%: peak to peak strain) and a large piezoelectric actuator constant (d33*=449 pm/V) together with a high Curie temperature (TC) of 503°C were observed in the ceramics with = 0.30 and = 5. As a result, the enhanced piezoelectricity and large electric‐field‐induced strain could significantly stimulate further researches in BFO‐based ceramics.  相似文献   

15.
The phase structure, dielectric, ferroelectric, and piezoelectric properties of (1?2x)BiScO3xPbTiO3xPbMg1/3Nb2/3O3 ceramics (x = 0.30‐0.46) were studied. It was found that an increase in x leads to a structural phase transition between the rhombohedral and tetragonal phase via an intermediate monoclinic phase and to a crossover from the nonergodic relaxor state to the ferroelectric one. It was proposed that at x > 0.42 the phase transition changes from second to first order. The assumption about the existence of a tricritical point on the phase diagram at x ≈ 0.42 with the enhanced dielectric response has been made. The observed structure‐property relationships of the studied solid solutions are discussed. It is shown that the solid solutions with x = 0.42 are characterized by the high piezoelectric parameters (d33 = 509 pC/N, d31 = ?178 pC/N, dh = 153 pC/N), which makes possible their applications in sonar equipment.  相似文献   

16.
Low‐temperature sintering of 0.25PMN–0.40PT–0.35PZ ceramics was investigated using CuO as a sintering aid. Effect of CuO on the sinterability, microstructure, and electric properties of 0.25PMN–0.40PT–0.35PZ system was systematically studied. The CuO addition significantly reduced the sintering temperature of 0.25PMN–0.40PT–0.35PZ from 1260°C to 950°C. SEM results indicated that a dense microstructure without any second phase was obtained when the amount of CuO was 0.25 wt%, which gave rise to high values of d33 = 532 pC/N and kp = 58.4%. A large field‐induced longitudinal strain ~2.28% (at 30 kV/cm) can also be obtained for 0.25 wt% CuO‐added specimens, which shows a great promise for multilayer actuator applications.  相似文献   

17.
The poling effect on the [011]‐oriented (1?x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–xPT) single crystals across the morphotropic phase boundary (MPB) was studied. The dielectric and piezoelectric properties were investigated as a function of the poling field. Domain structure evolutions during the poling process were recorded. In the unpoled PMN–xPT phase diagram, an apparent rhombohedral (R)‐tetragonal (T) phase boundary exists. With room‐temperature poling, the structure transformation sequence strongly depends on the composition. The crystal experiences a direct transition to the 2R/2T domain state in the rhombohedral or tetragonal phase field beyond the MPB region, whereas within the MPB zone it is hard to achieve the 2R/2T engineered configuration although the initial state is either rhombohedral or tetragonal as well. The piezoelectric responses of the MPB·PMN–xPTs are extraordinary weak (d33 ~ 250 pC/N), in contrast to the [011]‐oriented multidomain PMN–xPTs with ultrahigh‐piezoelectric coefficient (d33 > 1000 pC/N). We demonstrate that a slight composition variation near the MPB will significantly influence the domain evolution route and piezoelectricity for the [011]‐oriented PMN–xPT crystals. We also confirm the feasibility to realize the 2R/2T engineered domain configuration for the [011]‐oriented MPB crystals, which will extend the desired portion of the Bridgeman‐grown boules with optimal piezoelectric properties.  相似文献   

18.
(1 ? x)(0.85Bi0.5Na0.5TiO3–0.11Ba0.5K0.5TiO3–0.04BaTiO3)‐ xK0.5Na0.5NbO3 lead‐free piezoelectric ceramics with = 0.00, 0.02, 0.03, 0.04, 0.05, and 0.10 were prepared by a conventional solid state method. A coexistence of rhombohedral (R) and tetragonal (T) phases was found in the system, which tended to evolve into pseudocubic symmetry when x increases. The = 0.04 sample exhibited improved electrical properties: the dielectric constant εr = 1900 with the low loss tangents 0.06, the Smax/Emax of ~400 and ~460 pm/V under unipolar and bipolar electric field, respectively. Meanwhile, piezoelectric constant d33 still maintained ~160 pC/N. These could be owed to the formation of polar nanoregions for relaxor phase.  相似文献   

19.
Ferroelectric phase coexistence was constructed in (1?x)BaTiO3xCaSnO3 lead‐free ceramics, and its relationship with the piezoelectricity of the materials was investigated to ascertain potential factors for strong piezoelectric response. It is found that the addition of CaSnO3 caused a series of phase transitions in the (1?x)BaTiO3xCaSnO3 ceramics, and a ferroelectric coexistence of rhombohedral, orthorhombic, and tetragonal phases is formed at = 0.08, where the ceramics exhibit the lowest energy barrier and consequently facilitate the polarization rotation and extension, resulting in the optimal piezoelectricity of d33 and kp values of 550 pC/N and 0.60, respectively. Our study provides an intuitive insight to understand the origin of high piezoelectricity in the ceramics with the coexistence of multiferroelectric phases.  相似文献   

20.
Piezoceramics 0.99[(Bi0.5Na0.4K0.1)1?xLaxTiO3]?0.01[Ba0.7Sr0.3TiO3] (BNKT–BST–Lax, = 0–0.030) were synthesized using a conventional solid‐state reaction method. X‐ray diffraction revealed a phase transition from a tetragonal to cubic phase at  0.005. The maximum dielectric constant as well as the depolarization temperature (Td) decreased with increasing La content. La addition interrupted the polarization and strain hysteresis loops and demonstrates that the ferroelectric order of the BNKT–BST ceramics lead to a reduction in the remnant polarization and coercive field. However, the destabilization of the ferroelectric order is accompanied by a significant increase in the unipolar strain which is highest at = 0.020 with a value of ~0.39% and corresponding normalized strain, d*33 (= Smax/Emax) of 650 pm/V. It was observed that the unipolar strain of = 0.020 is very temperature insensitive up to 125°C, even at 125°C the d*33 is as high as ~431 pm/V. Moreover, an electric‐field‐dependent XRD was conducted to identify the main source of the high strain and a recoverable transformation from cubic to a rhombohedral–tetragonal mixed phase was observed. The recoverable field‐induced phase transformation is suggested to be the main cause for the obtained large strain at = 0.020 in the BNKT–BST–Lax ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号