首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[0001] textured alumina ceramics with a fine grain size were fabricated between 1400°C and 1600°C via templated grain growth (TGG) using fine alumina platelets (~0.6 and ~3 μm diameter) aligned by tape casting in either a 50 nm α‐Al2O3 matrix powder, or in a seeded boehmite sol. The 3 μm templates could be readily aligned by tape casting in both matrices (orientation parameters r = 0.27 and 0.18, respectively), whereas 0.6 μm diameter templates were well aligned in the seeded boehmite sol only (r = 0.29). Improved alignment in boehmite sols is attributed to inorganic gelation, resulting in a strongly pseudo‐plastic rheology that preserves template alignment against the influence of Brownian motion. The in situ formation of fine α‐Al2O3 matrix after transformation in the seeded boehmite system results in a higher driving force for TGG and improves texture development. The combination of 3 μm templates with a seeded boehmite matrix results in extremely high texture qualities (texture fraction f = 0.97–0.99, r = 0.17) while maintaining a relatively fine grain size (5–10 μm in diameter and 1.5–3 μm in thickness). Although undoped samples can be fully textured at 1600°C, adding as little as ~0.25 wt% CaO/SiO2 dopant improves TGG kinetics and yields full texture at 1400°C.  相似文献   

2.
Stagnation of grain growth is often attributed to impurity segregation, which becomes more severe as the grain size grows. In this respect, there is no evidence for segregation‐induced slowdown in the grain growth of yttria‐stabilized cubic zirconia, which obeys the parabolic law when the size increases by more than ten times. However, lowering the temperature below 1300°C triggers an abrupt slowdown, constraining the average grains to grow by less than 0.5 μm in 1000 hours despite a relatively large driving force imparted in the fine grains of ~0.5 μm. Yet isolated pockets of abnormally large grains, and even most remarkably, pockets of abnormally small grains, emerge in the same latter sample. Such extreme bifurcation of microstructure has never been observed before, and can be explained by an inhomogeneous distribution of immobile four‐grain junctions. The implications of these findings for two‐step sintering are discussed.  相似文献   

3.
The abnormal grain growth (AGG) in polycrystalline diamond (PCD) during high pressure-high temperature sintering (6 GPa; 1600 °C) was investigated. Some grains grew to a size of several hundreds of micrometers in PCD manufactured with 2-μm diamond powder. However, the AGG distribution was inhomogeneous possibly due to the inhomogeneous pressure distribution. When the initial average particle diameter of diamond powder was 4 μm, no AGG was observed within the experimental range (1 h) due to an increase in the diffusion distance. Electron backscattered diffraction technique was used to show that the abnormally grown grains were single crystals with and without their twins with the {1 1 1} twinning planes. The {1 1 1} faceted planes developed in the abnormally grown crystals, suggesting that AGG in PCD could be explained by the 2D nucleation mechanism.  相似文献   

4.
Abnormal grain growth (AGG), where a small number of grains grow to sizes much larger than the neighboring matrix grains, is a frequent occurrence in liquid phase sintering of ceramics and cermets. As AGG can be detrimental to the material properties, a considerable amount of research on the nature, causes and suppression of AGG has been carried out. In this review, we outline the mixed control theory of grain growth and the principle of microstructural evolution that have been developed by Kang and coworkers over the last two decades. The theory and the principle, which are based on theories of crystal growth from a liquid, state that grain growth behavior is controlled by the nature of the solid-liquid interfaces, either atomically rough (macroscopically rounded) or smooth (macroscopically faceted). For grains with atomically rough solid-liquid interfaces, growth is controlled by diffusion of solute through the liquid phase and normal grain growth always occurs. For grains with faceted solid-liquid interfaces (or a mixture of rough and faceted interfaces), growth is interface reaction-controlled and diffusion-controlled below and above a critical driving force for growth, respectively. Depending on the relative values of the critical driving force for growth Δgc and the maximum driving force for the largest grain in the system Δgmax, pseudo-normal, abnormal, and stagnant grain growth can take place. Based on this theory and principle, we present strategies for suppressing AGG by adjusting Δgc and Δgmax to avoid AGG and examples of the successful use of these strategies.  相似文献   

5.
Using the composite powders of (Na0.5K0.5)NbO3 (NKN) nano-particles and nano-rods as starting materials, the NKN single crystals were prepared by abnormal grain growth (AGG) method. The morphology evolution and the formation mechanism in the crystal growth process were investigated in detail. The results revealed that the average size and the apparent quantity of abnormal grains increased gradually with the increase of sintering temperature. The biggest NKN single crystals with size of about 3 mm were obtained at 950 °C for 2 h. Though the nano-particles and nano-rods have the same composition, the driving forces are distinctively different due to the diversity of grain morphology. The nano-rods have the large driving forces especially at high sintering temperature, which plays a dominant role in facilitating the formation of NKN single crystals during AGG process.  相似文献   

6.
《Ceramics International》2020,46(10):16345-16353
Dense boron carbide bearings with a central through hole were fabricated by hot-press sintering. When the sintering temperature was above the critical grain growth temperature, an increase in the applied pressure at 2100 °C caused a distinct abnormal grain size region. Two grain growth mechanisms were explored; normal grain growth (NGG) is controlled by a grain boundary diffusion mechanism whereas the abnormal grain growth (AGG) pattern abides by the ‘Bose–Einstein’ grain growth law.  相似文献   

7.
A novel X‐ray diffraction based method is presented, capable of determining volume‐based crystal size distribution (CSD) of polycrystalline materials and crystalline powders with unprecedented sampling statistics; the method is named fast X‐ray diffraction crystal size distribution analysis (FXD‐CSD). FXD‐CSD can be performed with standard laboratory X‐ray diffractometers equipped with a position sensitive detector and uses a software package written in Python for the data analysis. FXD‐CSD is a destruction‐free and generally applicable method to establish CSDs of polycrystalline materials as well as powders for sizes well below 1 μm up to about 100 μm; it even allows for studies of samples enclosed in complex environments, e.g., for in situ measurements in a furnace or in a pressure cell. To show the capability of the method the microstructural evolution of four alumina substrates with different time‐spans of sintering (4, 8, 16, and 24 hour at 1600°C) is investigated via FXD‐CSD and SEM imaging. The corresponding CSDs and average grain sizes are determined, results obtained by FXD‐CSD and the line‐intersection methods are compared and clear evidence for the presence of abnormal grain growth (AGG) during sintering is shown. From three tested probability density functions (PDF) describing the CSDs a log‐normal PDF fits best to the volume based CSDs; the method provides size distributions with unprecedented precision opening the way to a systematic and meaningful comparison between theoretically predicted and observed CSDs.  相似文献   

8.
The origin of nonuniform microstructure and abnormal grain growth (AGG) was investigated in flash sintered 3 mol% yttria-stabilized zirconia (3YSZ) ceramics. The microstructural homogeneity decreased with increasing direct current (DC) density and with dwell time in a flash state, eventually resulting in AGG in the specimen core, the first observation of AGG in 3YSZ. Abnormal grains up to 100 μm in size emerged when the DC density was ≥160 mA/mm2, and the specimen's density exceeded 99% of theoretical, starting from the cathode and propagating toward the anode. The results are discussed by comparison with established mechanisms and previous experimental evidence concerning AGG in oxides, focusing on the possible effects of the electrochemical reduction at the cathode end of the specimen.  相似文献   

9.
Hydrothermally synthesized ZnS nanopowders comprising small and large particles were used to synthesize ZnS ceramics. Small particles (200 nm) existed in the gaps between the large particles (0.7 μm) and assisted the densification of the ZnS ceramics. ZnS ceramics sintered at low temperatures (<1000°C) exhibited small grains with large grain-boundary areas that provided diffusion paths for carbon ions from the graphite mold, resulting in carbonate absorption bands. ZnS ceramics sintered at high temperatures (≥1000°C) for a long time (≥2.0 hours) exhibited a dense microstructure with very large grains (>500 μm). The ZnS liquid phase, which was formed at approximately 980°C, assisted the densification and grain growth of the ZnS ceramics. A 3.0-mm-thick ZnS ceramic sintered at 1000°C for 16 hours showed a high Knoop hardness (321 kgf/mm2) and a high transmittance of 71% in the wavelength range 6.0-12 μm without carbonate absorption bands.  相似文献   

10.
Nextel? 610 alumina fiber tows were heat‐treated at 1100°C–1500°C for 1 to 100 h in air. Tensile strengths and Weibull moduli were measured for 30 filaments after each heat‐treatment. 3‐D grain size and orientation distributions were described using oblate ellipsoids. The number of grains in a 1 inch gauge length and grains with the largest major and minor ellipsoid‐axes were determined from these distributions. The grain with the largest KEFF for mixed‐mode fracture was also determined, using the maximum energy release rate criteria from grain‐size and orientation distributions. Grain‐size dependence of tensile strength and Weibull modulus was evaluated. Strength had no obvious dependence on grain size for fibers with average major‐axes smaller than 0.25 μm. For fibers with larger grains, grain‐size dependence may involve flaws originating from clumps of grains, rather than a single grain. Possible relationships between strength and grain‐size and other causes of strength degradation after heat‐treatment are discussed.  相似文献   

11.
Nextel? 610 alumina fibers were heat‐treated at 1100°C–1500°C for 1–100 h in air. Grain size distributions (GSDs) and grain orientation distributions (ODs) with respect to the fiber axis were characterized by analysis of TEM images from longitudinal fiber sections. The 2‐D GSDs and ODs were characterized as ellipses. 3‐D GSDs and ODs were calculated by fitting distributions of oriented oblate ellipsoids to 2‐D GSDs and ODs formed by ellipsoid–section‐plane intersections. The standard deviations (SDs) of log‐normal GSDs consistently increased with grain size, which is not diagnostic of normal grain growth. The grain aspect ratio (α) and the tendency of the short grain axis to orient perpendicular to the fiber axis also increased with grain size, resulting in more textured fibers at larger grain sizes. Average 3‐D grain sizes were larger than 2‐D sizes for GSDs with small SDs, but smaller for GSDs with large SDs because of under sampling of small grains. 3‐D grain growth kinetics had the same 815 kJ/mol activation energy as that found by 2‐D analysis, but the grain growth exponent m of 6.0 was larger and the pre‐exponential factor much smaller. Expressions for 3‐D log‐normal GSDs as a function of heat treatment temperature and time were determined. α‐distributions and ODs were determined as a function of grain size. Methods for determining 3‐D GSDs are discussed.  相似文献   

12.
In this study, calcium lanthanum sulfide (CaLa2S4, CLS) ceramics with the cubic thorium phosphate structure were sintered at different temperatures by field‐assisted sintering technique (FAST). Densification behavior and grain growth kinetics were studied through densification curves and microstructural characterizations. It was determined that the densification in the 850°C‐950°C temperature range was controlled by a mixture of lattice or grain‐boundary diffusion, and grain‐boundary sliding. It was revealed that grain‐boundary diffusion was the main mechanism controlling the grain growth between 950°C and 1100°C. The infrared (IR) transmittance of the FAST‐sintered CLS ceramics was measured and observed to reach a maximum of 48.1% at 9.2 μm in ceramic sintered at 1000°C. In addition, it was observed that the hardness of the CLS ceramics first increased with increasing temperature due to densification, and then decreased due to a decrease in dislocations associated with grain growth.  相似文献   

13.
S. Eibl 《火与材料》2017,41(7):808-816
Fundamental aspects for the thermal decomposition and formation of respirable fragments of carbon fibers are investigated to assess the health hazard of carbon fiber reinforced plastic material after a fire. The influence of temperature (600°C‐900°C)/heat flux (30‐80 kW/m2), time of thermal load (up to 20 minutes), and oxygen exposure is analyzed by means of mass loss and fiber diameter of intermediate modulus and high tenacity fibers with initial diameters of 5 to 7 μm. Various types and concentrations of flame retardants were tested with respect to fiber protection. Epoxy‐based composite specimens (RTM6/G0939) additionally containing aluminum or magnesium hydroxide and/or zinc borate (1‐25 wt% per resin) were analyzed by cone calorimetry. Carbon fiber decomposition increases with combustion/irradiation time and temperature/heat flux, after a threshold temperature (ca 600°C) is exceeded. Critical fiber diameters below 3 μm are reached within minutes and are predominantly observed close to the panel surface in contact with air. Effective fiber protection is achieved by flame retardants acting beyond 600°C, forming thermally resistant layers such as zinc borate. A new field of research is opened identifying flame retardants, which protect carbon fibers in carbon fiber reinforced plastic.  相似文献   

14.
Porous alumina ceramics with unidirectionally-oriented pores were prepared by extrusion. Carbon fibers of 14 μm diameter and 600 μm length to be used as the pore-forming agent were kneaded with alumina, binder and dispersing agent. The resulting paste was extruded, dried at 110 °C, degreased at 1000 °C and fired at 1600 °C for 2 h. SEM showed a microstructure of dispersed highly oriented pores in a dense alumina matrix. The pore area in the cross section was 25.3% with about 1700 pores/mm2. The pore size distribution of the fired body measured by Hg porosimetry showed a sharp peak corresponding to the diameter of the burnt-out carbon fibers. The resulting porous alumina ceramics with 38% total porosity showed a fracture strength of 171 MPa and a Young's modulus of 132 GPa. This strength is significantly higher than the reported value for other porous alumina ceramics even though the present pore size is much larger.  相似文献   

15.
HfC‐30 vol%SiC ceramics with a relative density of 99.7% was obtained by pressureless sintering at 2300°C for 0.5 h. The resultant ceramics showed fine microstructure with HfC grain size around 1 μm. The hardness (20.5 ± 0.2 GPa), bending strength (396 ± 56 MPa), and fracture toughness (2.81 ± 0.18 MPa·m1/2) of HfC‐30 vol%SiC ceramics were at least 20% higher than those of monolithic HfC ceramics. The influences of SiC particle size, volume fraction, and the oxide impurity on the microstructure evolution of HfC‐based ceramics were examined. The results indicate that SiC addition and the oxygen impurity introduced by ball milling play opposite roles in the HfC grain growth during sintering. The oxide impurity introduced by ball milling caused the HfC grain coarsening, whereas SiC particles inhibited the grain growth of HfC significantly.  相似文献   

16.
Abnormal grain growth (AGG) in alumina with anorthite liquid has been observed with varying anorthite and MgO contents, at 1620°C. When only anorthite is added to form a liquid matrix, the grain–liquid interfaces have either flat or hill-and-valley shapes indicating atomically flat (singular) structures. The large grains grow at accelerated rates to produce AGG structures with large grains elongated along their basal planes. This is consistent with the slow growth at low driving forces and accelerated growth above a critical driving force predicted by the two-dimensional nucleation theory of surface steps. With increasing temperature, the AGG rate increases. The number density of the abnormally large grains increases with increasing anorthite content. The addition of MgO causes some grain–liquid interfaces to become curved and hence atomically rough. The grains also become nearly equiaxed. With increasing MgO content the number density of the abnormally large grains increases until the grain growth resembles normal growth. This result is qualitatively consistent with the decreasing surface step free energy associated with partial interface roughening transition.  相似文献   

17.
Porous alumina ceramics with unidirectionally oriented pores were prepared using an extrusion method. The paste for extrusion was prepared by mixing alumina and nylon 66 fibers with binder and dispersant. The resulting paste was extruded, dried at room temperature, and after removal of the binder at 600 °C, fired at 1500 °C for 2 h. The pore size in the sintered body, determined from SEM micrographs, was 16 μm, corresponding to the size of the burnt-out nylon 66 fibers. The degree of orientation of the cylindrical pores was evaluated from SEM micrographs to be highly aligned to the extrusion direction. The orientation of the pores decreased with increasing fiber loading because of strong interaction between the fibers. The pore size distribution of the extruded samples showed a peak at 16 μm corresponding to the cylindrical pore diameter and also at 4 and 6 μm corresponding to the pores formed by connection of the fibers.  相似文献   

18.
In the present paper the microstructure and domain structure in modified BaTiO3 with Pb and Ca as additives have been investigated using SEM technique. The (Ba,Pb)TiO3 and (Ba,Ca,Pb)TiO3 ceramics show a slight difference in grain size, being smaller in composites with Ca additives which acts as grain growth inhibitor. The domain configuration is almost the same. The small grain microstructure with tiny domains have been observed in specimen sintered at 1300°C and the average grain size is in the range 1–3 μm. For those specimens sintered at 1320°C the homogenous microstructure is also obtained with grain size around 2–4 μm. For both types of specimens, the single domain structure is associated with grain which size is lower than 2 μm. The banded domain structure could be observed in grains with size bigger than 3 μm. The bar shape grains and elongated grains together with some large region in microstructure are free of domain structure. The observed domain patterns reveal mainly the straight domain boundary lines with 90° domains walls. The wall thickness ranged from 0·03 μm to 0·15 μm, while the domain width is in the range of 0·1 μm–1 μm.  相似文献   

19.
Boron nitride (BN) fibers were fabricated on a large scale through the melt‐drawn technique from low‐cost boric acid, NH3, and N2. Evolution of structure and properties of BN fibers during the fabrication process was studied by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), and X‐ray photoelectron spectroscopy (XPS). The mechanical properties of BN fibers were tested and analyzed. The results shown that both the mechanical properties and the crystallinity of BN fibers slightly increased with the temperature from 450 to 850°C, due to the combination of the fused‐B3N3. For BN fibers heat‐treated at 850 or 1000°C, the tensile strength (σR) and elastic modulus (E) were strongly increased because of the increase in crystallization of the BN phase. The meso‐hexagonal BN fibers with a diameter of 5.0 μm were fabricated at 1750°C, of which the tensile strength (σR) and elastic modulus (E) are 1200 MPa and 85 GPa, respectively. BN fibers with excellent mechanical properties and proper diameters were obtained by nitriding of green fibers during their conversion into ceramic.  相似文献   

20.
Continuous aluminum oxide-mullite-hafnium oxide (AMH) composite ceramic fibers were obtained by melt-spinning and calcination from polymer precursor that synthesized by hydrolysis of the aluminum isopropoxide, dimethoxydimethylsilane and hafnium alkoxide. Due to the fine diameter of 8–9 µm, small grain size of less than 50 nm and the composite crystal texture, the highest tensile strength of AMH ceramic fibers was 2.01 GPa. And the AMH ceramic fibers presented good thermal stability. The tensile strength retention was 75.48% and 71.49% after heat treatment at 1100 °C and 1200 °C for 0.5 h respectively, and was 61.57% after heat treatment at 1100 °C for 5 h. And the grain size of AMH ceramic fibers after heat treatment was much smaller than that of commercial alumina fibers even when the heat treatment temperature was elevated to 1500 °C, benefited by the grain size inhibition of monoclinic-HfO2 (m-HfO2) grains distributed on the boundary of alumina and mullite grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号