首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1 ? x)Ba0.6Sr0.4La4Ti4O15xBa5Nb4O15 (x = 0.05, 0.1, 0.15 and 0.2, BSLT–BN) ceramic samples were prepared by co‐firing the mixtures of Ba0.6Sr0.4La4Ti4O15 and Ba5Nb4O15 powders. Crystal structure, microwave dielectric properties and thermally stimulated depolarization currents (TSDC) of the BSLT–BN series ceramics were investigated. X‐ray diffraction patterns reveal that all the samples exhibit a hexagonal perovskite structure, which implies that the BSLT–BN mixtures form solid solutions. With increasing Ba5Nb4O15 content, the diffraction peaks shift to low angles and the sintering temperature of BSLT–BN decreases. Raman spectra analysis reveals the shifting and splitting of the vibration modes. The microwave dielectric properties of the well‐sintered (1 ? x)BSLT–xBN ceramics vary with Ba5Nb4O15 content. The dielectric permittivity of the ceramics exhibits a slight decreasing trend. The quality factor varies in the range of 45 000–11 200 GHz, whereas near‐zero temperature coefficients of the resonant frequency may be achieved by changing the Ba5Nb4O15 content. TSDC was utilized to explore the extrinsic loss mechanism associated with defects. TSDC relaxation peaks are mainly generated by oxygen vacancies, and the Ba5Nb4O15 content has a significant influence on the TSDC spectra.  相似文献   

2.
(1 ? x)MgTiO3xCa0.8Sr0.2TiO3 (0.04 ≤ x ≤ 0.2, MT‐CST) composite ceramics were prepared by the conventional solid‐state reaction process. The phase composition, microwave dielectric properties, and microwave dielectric loss mechanisms were studied. Ca0.8Sr0.2TiO3 was employed as a τf compensator for MgTiO3, and they coexisted well without forming any secondary phases. Interestingly, significant dielectric relaxations associated with oxygen vacancy defects were observed in all the MT‐CST ceramics through the dielectric‐temperature spectra. Thermally simulated depolarization current was therefore conducted to obtain the defects associated with extrinsic dielectric loss mechanisms. The concentrations of both defect dipole and in‐grain oxygen vacancies increased with the increasing x, which could induce microwave dielectric loss consequently. It demonstrated that the behaviors of Q × f were basically influenced by phase composition and defects here. Temperature‐stable ceramics can be achieved at x = 0.06, where the microwave dielectric properties were εr = 21.19, × f = 110 900 GHz (f = 9.295 GHz), and τf = ?0.9 ppm/°C, respectively.  相似文献   

3.
A new low‐fired dielectric material derived from CaMg0.9Zn0.1Si2O6 (CMZS) ceramics with high quality factor was synthesized by solid‐state reaction method. The effects of MgF2 addition on the sinterability, phase composition, crystal defects, and microwave dielectric properties of CMZS were investigated. MgF2 was proved not only to lower the sintering temperature to ~1000°C but also to remarkably modify the microwave dielectric properties of CMZS. In addition to the main diopside phase, forsterite was identified as the secondary phase in all MgF2‐doped samples. Dielectric temperature spectra showed that MgF2 induced significant dielectric relaxations associated with oxygen vacancy defects to CMZS. Thermally stimulated depolarization current was, therefore, considered to obtain the defects associated with extrinsic microwave dielectric loss mechanisms. Compared with undoped CMZS, although the concentration of oxygen vacancies showed a notable increase in the 5 wt% MgF2‐doped CMZS, the Q×f values were still improved. Here, with proper MgF2‐doping, it demonstrated that the microwave dielectric loss was basically influenced by phase composition. The excellent characteristics of εr = 7.78, Q×= 151 800 GHz, and τf = ?26.40 ppm/°C were achieved from the 5 wt% MgF2‐doped specimens sintered at 1000°C.  相似文献   

4.
Microwave dielectric ceramics of (1?x)Ba(Mg1/3Nb2/3)O3xBaSnO3 [(1?x)BMN‐xBS] with high quality factors was synthesized by the solid‐state reaction method. The effects of BaSnO3 additions (x = 0–0.2) on the sinterability, crystal structures, microwave dielectric properties, and microwave dielectric loss mechanisms of BMN were investigated systematically. The degree of 1:2 cation ordering was decreased with increasing Sn content and eventually faded away as x ≥ 0.1, where the low‐temperature relaxations disappeared coincidently through the thermally stimulated depolarization current technique. It was supposed to be the short‐range misplacements of the B‐site cations within the long‐range ordered structure. Meanwhile, the high‐temperature relaxations associated with the in‐grain oxygen vacancies were found in all the title compounds. Though the concentrations of oxygen vacancies of 0.8BMN‐0.2BS were higher than BMN, high Q × f values could also be obtained even in the absence of 1:2 cation ordering. Specifically, the excellent characteristics like εr = 29.02, Q × f = 90 000 GHz and τf = 6.3 ppm/°C were achieved in the specimens of x = 0.2 sintered at 1450°C.  相似文献   

5.
xNd(Zn1/2Ti1/2)O3–(1?x)Ba0.6Sr0.4TiO3 (xNZT–BST) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method with = 0, 3%, 6%, and 10%. The structures, surface morphology, dielectric and ferroelectric properties, and thermal stability of xNZT–BST thin films were investigated as a function of NZT content. It was observed that the introduction of NZT into BST decreased grain size, dielectric constant, ferroelectricity, tunability, and significantly improved dielectric loss and dielectric thermal stability. The corresponding reasons were discussed. The 10%NZT–BST thin film exhibited the least dielectric loss of 0.005 and the lowest temperature coefficient of permittivity (TCP) of 3.2 × 10?3/°C. In addition, the figure of merit (FOM) of xNZT–BST (x = 3%, 6%, and 10%) films was higher than that of pure BST film. Our results showed that the introduction of appropriate NZT into BST could modify the dielectric quality of BST thin films with good thermal stability. Especially for the 3%NZT–BST thin film, it showed the highest FOM of 33.58 for its appropriate tunability of 32.87% and low dielectric loss of 0.0098.  相似文献   

6.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

7.
(Sr1?xCax)La2Al2O7 (0.1 ≤  0.5) ceramics were prepared by a standard solid‐state reaction method. Their densification behavior and microwave dielectric properties were investigated together with the structural evolution. X‐ray diffraction analysis indicated that the major phase of Ruddlesden–Popper structure with = 2 was obtained for all the compositions investigated here. Partial Ca substitution improved the sintering behavior of SrLa2Al2O7 ceramics. More importantly, microwave dielectric characteristics were enhanced in (Sr1?xCax)La2Al2O7 ceramics with compositions of = 0.1~0.3. The stacking fault was confirmed by TEM observation in the present ceramics, and the microwave dielectric loss was influenced by it. The best combination of microwave dielectric characteristics was achieved for the composition of = 0.1: εr = 19.9, Qf = 135 400 GHz and τf = ?18.5 ppm/°C.  相似文献   

8.
The novel low‐temperature sinterable (1 ? x)Ba3(VO4)2xLiMg0.9Zn0.1PO4 microwave dielectric ceramics were prepared by cofiring the mixtures of pure‐phase Ba3(VO4)2 and LiMg0.9Zn0.1PO4. The phase structure and grain morphology of the ceramics were evaluated using X‐ray diffraction, Raman spectra, and scanning electron microscopy. The results indicated that Ba3(VO4)2 and LiMg0.9Zn0.1PO4 phases can well coexist in the sintered body. Nevertheless, a small amount of LiZnPO4 and some vanadate phases with low melting points were observed, which not only can influence the microwave dielectric properties of the ceramic but also can obviously improve the densification behavior at a relatively low sintering temperature. The near‐zero temperature coefficients of the resonant frequency (τf) could be achieved by adjusting the relative content of the two phases owing to their opposite τf values and simultaneously a desirable quality factor Q × f value can be maintained. No chemical reaction between the matrix ceramic phase and Ag took place after sintering at 800°C for 4 h. The ceramics with 45 vol% LiMg0.9Zn0.1PO4 can be well sintered at only 800°C and exhibit excellent microwave dielectric properties of εr ~ 10, Q × f ~ 64 500 GHz, and τf ~ ?2.1 ppm/°C, thus showing a great potential as a low‐permittivity low‐temperature cofired microwave dielectric material.  相似文献   

9.
The sintering behaviors and dielectric properties of Ba0.6Sr0.4TiO3 ceramics were investigated as a function of B2O3 and CuO content. The addition of both B2O3 and CuO reduced the sintering temperature of Ba0.6Sr0.4TiO3 about 500°C. It was suggested that a liquid phase BaCu(B2O5) was formed and assisted the densification of Ba0.6Sr0.4TiO3 ceramics. Ba0.6Sr0.4TiO3 ceramics co‐doped with 3.0 mol% B2O3, and 2.0 mol% CuO, sintered at 950°C for 5 h, had a dense microstructure and showed good microwave dielectric properties of a moderate dielectric constant (ε = 1048), low dielectric loss (0.0090) and high tunability (42.2%) at dc electric field of 30 kV/cm.  相似文献   

10.
通过固相反应法合成了Sr0.6Ba0.4Nb2O6陶瓷,并对其进行了结构、介电性能的表征。结果表明Sr0.6Ba0.4Nb2O6陶瓷为四方钨青铜结构单相,其在60℃附近存在一个明显的弥散介电峰,峰值温度随频率向高温偏移,为典型的弛豫铁电相变。室温时,10kHz频率下,其介电常数约为1404,介电损耗为0.03。  相似文献   

11.
According to solid‐state reaction routine, microwave dielectric ceramics of aluminum‐supplanted Ba6?3xNd8+2xTi18O54 (0.5 ≤ x ≤ 0.75) ceramics were synthesized and the effects of composition on microwave dielectric properties were determined. As x value increasing from 0.5 to 0.75, with high‐quality factor values (Q × f > 8000 GHz), both dielectric constant (εr) and temperature coefficient of resonant frequency (τf) dropped. The X‐ray diffraction patterns showed a single phase for all compositions. Typically, the research gained temperature coefficients at resonant frequency around + 10 ppm/°C, while kept high relative permittivity and quality factor value.  相似文献   

12.
Preparation and microwave dielectric properties of B2O3‐doped CaLa4Ti4O15 ceramics have been investigated. X‐ray diffraction data show that CaLa4Ti4O15 ceramic has a trigonal structure coupled with a second phase of CaLa4Ti5O17. The CaLa4Ti4O15 ceramic with addition of 0.5 wt% B2O3, sintered at 1220°C for 4 h, exhibits microwave dielectric properties with a dielectric constant of 45.8, Q × f value of 24,000 GHz, and temperature coefficient of resonant frequency (τf) of ?19 ppm/°C. B2O3‐doped CaLa4Ti4O15 ceramics, which have better sintering behavior (decrease in sintering temperature ~ 330°C) and dielectric properties than pure CaLa4Ti4O15 ceramics, are candidates for applications in microwave devices.  相似文献   

13.
Spinel‐structured (Zn1?x(Li2/3Ti1/3)x)2TiO4 (x = 0–1) microwave dielectric ceramics were manufactured via a conventional mixed‐oxide method. The X‐ray diffraction and Raman spectra revealed that a disordered face‐centered cubic phase was found in the composition range of x < 0.5, and an ordered primitive cubic spinel solid solution was achieved as x was beyond 0.5. Such a disorder–order transition near x = 0.5 was accompanied by the variation of composition‐induced cation occupancy. The Q × f value first kept increasing up to ~160 000 (GHz) in disordered ceramics, and then sharply decreased as an ordered structure appeared at x ≥ 0.5. An obvious decrease in τf value was also accompanied by the appearance of an ordered structure. The minimum τf value (~ ?20 ppm/°C) was obtained in the x = 0.75 sample with the highest structural order degree. These results demonstrated that microwave dielectric properties of current spinel ceramics could be successfully modified by adjusting their structural order degree, which could be appropriately adopted for the design of spinel‐structured materials with favorable properties.  相似文献   

14.
The crystal structure and piezoelectric properties of (1?x)Pb(Zr1?yTiy)O3xPb(Zn0.4Ni0.6)1/3Nb2/3O3 [(1?x)PZ1?yTyxPZNN] ceramics were investigated. The 0.665PZ0.45T0.55‐0.335PZNN ceramic has the triple point composition, where the rhombohedral, pseudocubic, and tetragonal structures coexist. Maximum d33 and kp values of 770 pC/N and 0.69, respectively, were observed from this specimen; it also exhibited a large εT33/εo value of 3250. Although the maximum d33 value was obtained from the triple point composition specimen, its g33 and d33 × g33 values were relatively small because of its large εT33/εo value. However, the 0.665PZ0.46T0.54‐0.335PZNN ceramic, which has a rhombohedral structure, exhibited a large g33 value of 43 × 10?3 Vm/N and a d33 × g33 value of 27 000 × 10?15 m2/N. Therefore, this ceramic is a good candidate for multilayer actuators and piezoelectric energy harvesters.  相似文献   

15.
用凝胶预碳化处理工艺的溶胶-凝胶法制备了晶粒粒径小且分散性能较好的钙锶铋钛(Ca0.4Sr0.6Bi4Ti4O15)纳米晶粉体.借助差热-热重分析仪、X射线衍射仪和扫描电镜等分别确定凝胶的预碳化处理温度,研究了预碳化处理工艺对粉体的物相结构、粉体的微观形貌以及分散性能的影响,并分析讨论了预碳化机理.结果表明:在300℃对前驱体凝胶进行预碳化处理增强了粉体的分散性,降低粉体的粒度,提高粉体的均匀性.凝胶预碳化处理工艺并未对粉体的物相结构造成影响.经过预碳化处理制备的粉体的颗粒尺寸集中在100nm左右;未经预碳化处理的粉体的颗粒尺寸为100nm~1 μm.凝胶预碳化处理后,高吸附活性的有机碳包覆在前驱体的表面是有效减少粉体团聚的原因.  相似文献   

16.
Microwave dielectric properties of Li‐containing orthorhombic compounds with the composition of MLi2Ti6O14 (M = Ba and Sr) were investigated. The ceramics were synthesized by the conventional solid‐state reaction route. The optimized sintering temperatures for the BaLi2Ti6O14 and SrLi2Ti6O14 ceramics are 1025°C and 1000°C, respectively. Favorable microwave dielectric properties were obtained with moderate εr of 31.7 and 33.6, quality factor Q × f values of 23 300 (at 7.3 GHz) and 8700 GHz (at 6.8 GHz), and low‐temperature coefficient of resonant frequency (τf) values of ?15.4 and ?2.7 ppm/°C for BaLi2Ti6O14 and SrLi2Ti6O14 ceramics, respectively. The addition of BaCu(B2O5) can effectively reduce the sintering temperature below 930°C without degrading the microwave dielectric properties. Compatibility with Ag electrode indicates these materials could be applied to low‐temperature cofired ceramic devices.  相似文献   

17.
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (× f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application.  相似文献   

18.
Ceramics in the solid solution system, (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3, were prepared by a conventional mixed oxide route. Single‐phase perovskite‐type X‐ray diffraction patterns were observed for compositions x < 0.6. A change from tetragonal to single‐phase cubic X‐ray patterns occurred at x ≥ 0.1. Dielectric measurements indicated relaxor behavior for x ≥ 0.1. Increasing the Bi(Mg0.5Ti0.5)O3 content improved the temperature sensitivity of relative permittivity ?r at high temperatures. At x = 0.5, a near‐plateau relative permittivity, 835 ± 40, extended across the temperature range, 65°C–550°C; the permittivity increased at x = 0.6 to 2170 ± 100 for temperatures 160°C–400°C (1 kHz). The corresponding loss tangent, tanδ, was ≤0.025 for temperatures between 100°C and 430°C for composition x = 0.5; at x = 0.6, losses increased sharply at >300°C. Comparisons of dielectric properties with other materials proposed for high‐temperature capacitor applications suggest that (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics are a promising base material for further development.  相似文献   

19.
Ultralow‐temperature sinterable Ba3V4O13 ceramics have been prepared through solid‐state ceramic route. Structural properties of the ceramic material are studied using powder X‐ray diffraction. Ba3V4O13 ceramic has monoclinic structure and the existence of [V4O13]6? polyhedra is confirmed through Laser Raman studies. The sample sintered at 600°C for 1 h shows dense microstructure with microwave dielectric properties of εr = 9.6, Q × f = 56 100 GHz, and τf = ?42 ppm/°C. The ceramics under study show good chemical compatibility with aluminum during cofiring.  相似文献   

20.
The properties of relaxor ceramics in the compositional series (1?x)K0.5Bi0.5TiO3xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative permittivity, decreased from 380°C at = 0.0 to below room temperature for > 0.7. Compositions = 0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33 piezoelectric charge coefficient, 130 pC/N, and strain, 0.14%, occurred at = 0.1. Piezoelectric properties of = 0.1 were retained after thermal cycling from room temperature to 220°C, consistent with results from high‐temperature X‐ray diffraction indicating a transition to single‐phase cubic at ~300°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号