首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dielectric properties of CaZrO3 (CZ) modified 0.94Bi1/2Na1/2TiO3 (BNT)–0.06BaTiO3 (BT) and 0.82(0.94BNT–0.06BT)–0.18(K1/2Na1/2)NbO3 have been investigated by impedance spectroscopy over a wide temperature range. The presence of a highly polarizable phase in addition to a bulk response is revealed by electric modulus (M″) spectra in both systems. The relaxation frequency of the polar phase follows the Vogel–Fulcher law below the Burns temperature which decreases with increasing CZ content. The dc conductivity of the ceramics is dominated by the bulk response which follows the Arrhenius law with an activation energy ranging from 1.4 to 1.7 eV and has an oxygen partial pressure dependence consistent with n‐type semiconductivity. This information is pertinent to on‐going compositional development of relaxor‐based high‐temperature dielectrics.  相似文献   

2.
Textured (1?x?y)Bi1/2Na1/2TiO3xBaTiO3yK0.5Na0.5NbO3 (BNT–100xBT–100yKNN) ceramics with a {001} pseudocubic (pc) orientation were fabricated by templated grain growth using Bi1/2Na1/2TiO3 templates. Temperature‐dependent electromechanical results demonstrate that the strain response of templated BNT–xBT–yKNN ceramics is stable from room temperature (RT) to 125°C. The temperature‐dependent strain and polarization response are compared to randomly oriented ceramics, for BNT–100xBT–2KNN (0.05 ≤ x ≤ 0.07). Textured BNT–7BT–2KNN reached a maximum 0.47% strain response at 5 kV/mm, an almost 50% increase compared to randomly oriented BNT–7BT–2KNN. Over the temperature range RT–125°C, the strain response of templated BNT–6BT–2KNN degraded from 0.38% to 0.22% (?42.1%) compared to 0.37% to 0.18% (?51.4%) for randomly oriented ceramics. The temperature‐dependent strain response suggests that templated BNT–100xBT–100yKNN ceramics are well suited for elevated temperature applications.  相似文献   

3.
A remarkable progress in the quest of lead‐free piezoceramics for actuator applications has been made with the development of incipient piezoceramics featured by giant strains. A drawback, however, is the high electric field required to generate this giant strain. A powerful approach to overcoming this drawback lies in relaxor/ferroelectric (FE) composites comprised such giant strain materials (matrix) and a FE or nonergodic relaxor (seed). In this study, we investigate the effect of K0.5Na0.5NbO3 content in the matrix and the volume ratio of seed to matrix using composites of 0.93Bi1/2Na1/2TiO3–0.07BaTiO3 as a seed and (0.94 ? x)Bi1/2Na1/2TiO3–0.06BaTiO3xK0.5Na0.5NbO3 as a matrix. The strain of all matrices, independent of their K0.5Na0.5NbO3 content, was found to be enhanced by adding a certain amount of seed. An optimum strain is achieved for the composite comprised of a matrix with x = 0.02 K0.5Na0.5NbO3 and 10% seed. By means of a differential analysis on the temperature‐dependent dielectric permittivity, it was shown that the seed phase is still present in the composites despite the naturally expected diffusion process during sintering.  相似文献   

4.
The potential high‐temperature dielectric materials 100?x(94Bi1/2Na1/2TiO3–6BaTiO3)–xK0.5Na0.5NbO3 with x = 12, 18, and 24 were processed as bulk samples in order to examine the reduction of sintering temperature by means of CuO as sintering aid. Due to the successful reduction of sintering temperature, low cost Ag:Pd could be used as a co‐fired electrode material for multilayer ceramic capacitors (MLCCs). Fabrication of 8 μm thick, dense MLCCs with self‐contained, nonreactive electrodes is reported for a wide range of compositions of Bi1/2Na1/2TiO3–BaTiO3–K0.5Na0.5NbO3. Among the manufactured MLCCs, those with compositions x = 24 showed the most promising dielectric properties for applications where high operating temperatures are needed. The temperature‐dependence of permittivity was quite low, revealing a change of less than ±10% compared to its 150°C‐value in the range of 40°C–225°C. For samples sintered at 1000°C, an RC constant of about 300 s was obtained at 150°C. Furthermore, these x = 24 MLCCs exhibited the finest microstructures among the compositions examined; making it a suitable candidate for further miniaturization of layer thickness as required for state‐of‐the art devices.  相似文献   

5.
(1 ? x)(0.85Bi0.5Na0.5TiO3–0.11Ba0.5K0.5TiO3–0.04BaTiO3)‐ xK0.5Na0.5NbO3 lead‐free piezoelectric ceramics with = 0.00, 0.02, 0.03, 0.04, 0.05, and 0.10 were prepared by a conventional solid state method. A coexistence of rhombohedral (R) and tetragonal (T) phases was found in the system, which tended to evolve into pseudocubic symmetry when x increases. The = 0.04 sample exhibited improved electrical properties: the dielectric constant εr = 1900 with the low loss tangents 0.06, the Smax/Emax of ~400 and ~460 pm/V under unipolar and bipolar electric field, respectively. Meanwhile, piezoelectric constant d33 still maintained ~160 pC/N. These could be owed to the formation of polar nanoregions for relaxor phase.  相似文献   

6.
采用传统固相法制备了(1-x)K0.5Na0.5NbO3-x(Na0.8K0.2)0.5Bi0.5TiO3(x=0-5%)无铅压电陶瓷,研究了(Na0.8K0.2)0.5Bi0.5TiO3的不同引入量对其物相结构、显微形貌、介电性能以及压电性能的影响。结果表明:所有样品都具有钙钛矿结构;随着x的增加,室温下样品从正交相逐渐向四方相过渡并且居里温度向低温方向移动,样品的压电常数d33与机电耦合系数kp均先升高后降低。该体系多晶型转变PPT位于2%≤x≤3%,当x=3%时,样品的压电性能达到最佳,其中:d33=189pC/N,kp=41%,Qm=96,tanδ=0.028。  相似文献   

7.
Relaxor ferroelectrics (0.94 ? x)(Bi0.5Na0.5)TiO3–0.06BaTiO3?x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT) (0 ≤ x ≤ 0.5), were prepared by a solid‐state reaction process, and their structures were characterized by the transmission electron microscopy and Raman spectroscopy. The BNT–BT–0.3SBT has a very high electrostrictive strain S = 0.152% with hysteresis‐free behavior, much more than the reported S in other ferroelectrics. SP2 profiles perfectly follow the quadratic relation, which indicates a purely electrostrictive effect with a high electrostrictive coefficient (Q11) of 0.0297 m4/C2. Even, its Q11 keeps at a high level in the temperature range from ambient temperature to 180°C. The field‐induced large electrostrictive strain of BNT–BT–0.3SBT was attributed to the existence of ferroelectric nanodomains.  相似文献   

8.
For enhancing the piezoelectric properties of ceramics (Bi0.5Na0.5)ZrO3 (BNZ) was used to partially substitute (K0.5Na0.5)NbO3 (KNN). The addition of BNZ changes the symmetry of KNN ceramics from orthorhombic to tetragonal, and finally to rhombohedral phase. A new phase boundary with both rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions near room temperature is identified for KNN–0.050BNZ ceramics, where optimum electrical properties were obtained: d33 = 360 pC/N, kp = 32.1%, εr = 1429, tanδ = 3.5%, and TC = 329°C. The results indicated a new method for designing high‐performance lead‐free piezoelectric materials.  相似文献   

9.
Ternary solid solutions of (1 ? x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)– xNaNbO3 (BNKT–xNN) lead‐free piezoceramics were fabricated using a conventional solid‐state reaction method. Pure BNKT composition exhibited an electric‐field‐induced irreversible structural transition from pseudocubic to ferroelectric rhombohedral phase at room temperature. Accompanied with the ferroelectric‐to‐relaxor temperature TF‐R shifted down below room temperature as the substitution of NN, a compositionally induced nonergodic‐to‐ergodic relaxor transition was presented, which featured the pinched‐shape polarization and sprout‐shape strain hysteresis loops. A strain value of ~0.445% (under a driving field of 55 kV/cm) with large normalized strain of ~810 pm/V was obtained for the composition of BNKT–0.04NN, and the large strain was attributed to the reversible electric‐field‐induced transition between ergodic relaxor and ferroelectric phase.  相似文献   

10.
Influence of K/Na ratio in (KxNa1?x)NbO3 on the ferroelectric stability and consequent changes in the electrical properties of 0.99(Bi0.5Na0.4K0.1)TiO3–0.01(KxNa1?x)NbO3 (BNKT–KxNN) ceramics were investigated. Results showed that change of K/Na ratio in KNN induces a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order, and correspondingly adjusts the ferroelectric–relaxor transition point TF?R to room temperature. Accordingly, giant strain of ~0.46% (corresponding to a large signal d33* of ~575 pm/V) which is comparable to that of Pb‐based antiferroelectrics is obtained at a K/Na ratio of ~1, and the emergence of large strain response induced by the change of K/Na ratio of KNN can be well explained by the correlation between the position of ferroelectric–ergodic relaxor phase boundary in the BNKT–KxNN system and the tolerance factor t of the end number (KxNN). In situ high‐energy X‐ray scattering experiments with external field reveals that the large strain response in the studied system is likely related to the electric field‐induced distortion from the pseudocubic structure.  相似文献   

11.
Quenching alkaline bismuth titanates from sintering temperatures results in increased lattice distortion and consequently higher depolarization temperature. This work investigates the influence of quenching on the ergodicity of relaxor Na1/2Bi1/2TiO3-BaTiO3-K0.5Na0.5NbO3. A distinct departure from ergodicity is evidenced from the increase in remanent polarization and the absence of frequency dispersion in the permittivity response of poled samples. Further, the samples exhibit enhanced negative strain upon application of electric field, indicating proclivity towards correlated polar nanoregions, corroborated by the enhanced tetragonal distortion. As a result, ergodic relaxor Na1/2Bi1/2TiO3-6BaTiO3-3K0.5Na0.5NbO3 exhibits a depolarization temperature of 85°C with a 60% increase in remanent polarization and approximately a threefold increase in remanent strain upon quenching. Quenching-induced changes in the local environment of Na+ and Bi3+ cations hinder the development of ergodicity promoted by the A-site disorder. These results provide new insight into tailoring ergodicity of relaxor ferroelectrics.  相似文献   

12.
Pure perovskite K0.5Na0.5NbO3xSrTiO3 (= 0.16, 0.17, 0.18, and 0.19) ceramics were prepared by using a solid‐state reaction process. The ceramics were optically transparent for visible and near‐infrared wavelengths. Then, high tunability (24.1%) and low dielectric loss (0.016) for the = 0.18 sample indicated the transparent ceramics could be used in tunable devices. The Lorentz‐type relation fitting for the temperature dependence of dielectric permittivity showed that these ceramics had a typical relaxor behavior, and the polar nanoregions were related to the tunable dielectric properties. The nonlinear dielectric behavior was further explored by the Johnson model combined with Langevin terms, which revealed that the polar nanoregions contributed to the nonlinear ε(E) dependencies with contributions of 12.3%, 11.6%, 5.9%, and 3.6% for = 0.16, 0.17, 0.18, and 0.19, respectively.  相似文献   

13.
Improved performance by texturing has become attractive in the field of lead‐free ferroelectrics, but the effect depends heavily on the degree of texture, type of preferred orientation, and whether the material is a rotator or extender ferroelectric. Here, we report on successful texturing of K0.5Na0.5NbO3 (KNN) ceramics by alignment of needlelike KNN templates in a matrix of KNN powder using tape casting. Homotemplated grain growth of the needles was confirmed during sintering, resulting in a high degree of texture parallel to the tape casting direction (TCD) and the aligned needles. The texture significantly improved the piezoelectric response parallel to the tape cast direction, corresponding to the direction of the strongest <001>pc orientation, while the response normal to the tape cast plane was lower than for a nontextured KNN. In situ X‐ray diffraction during electric field application revealed that non‐180° domain reorientation was enhanced by an order of magnitude in the TCD, compared to the direction normal to the tape cast plane and in the nontextured ceramic. The effect of texture in KNN is discussed with respect to possible rotator ferroelectric properties of KNN.  相似文献   

14.
The dielectric, ferroelectric, and electric field–induced strain behavior of Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT) ceramics modified with (Ba0.70Sr0.30)O3 (BST) were investigated as a function of composition and temperature. The ceramic samples were synthesized by a solid‐state mixed oxide method and sintered at 1125°C for 2 h. The XRD and Raman spectra showed coexisting rhombohedral and tetragonal phases throughout the entire compositional range with the tetragonal phase becoming dominant at higher BST concentrations. For all compositions, the temperature dependence of the dielectric spectra revealed a frequency dependence that is characteristic of a relaxor mechanism. This suggests that these ceramics lacked long‐range order and it appears that the maximum disorder was observed for the composition with 5 mol% BST (BNKT–0.05BST sample). This was evidenced by the observation of pinched hysteresis loops, even at room temperature, and a significant decrease in the Pr and Ec values which resulted in large electric field–induced strains (Smax) of 0.40% and a normalized strain coefficient ( = Smax/Emax) of 732 pm/V. This significant strain enhancement at the composition of x = 0.05 may be attributed to both a composition‐induced structural phase transition and a field‐induced relaxor to ferroelectric phase transition.  相似文献   

15.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

16.
(K0.5Na0.5)NbO3 piezoelectric ceramics can be sintered at a temperature as low as 750 °C for 5 h by incorporating Li2CO3 + Bi2O3 + ZnO as the sintering aid, whereas the conventional sintering temperature is around 1,100 °C. The optimal “soft” piezoelectric properties are obtained for ceramics sintered at 850 °C for 5 h. The dielectric permittivity (ε), piezoelectric coefficient (d 33), electromechanical coupling (k p) and mechanical quality factors (Q m) of (K, Na)NbO3 modified with 5.5 wt% sintering aids are 1,436, 90 pC/N, 0.3 and 10, respectively. These values are similar to the values obtained for (K0.5Na0.5)NbO3 ceramics sintered above 1,100 °C. The underlying mechanism for abrupt change of dielectric permittivity is explained.  相似文献   

17.
Bulk ceramic 72.5 mol%(Bi0.5Na0.5)TiO3–22.5 mol%(Bi0.5K0.5)TiO3–5 mol%Bi(Mg0.5Ti0.5)O3 (BNT–BKT–BMgT) has previously been reported to show a large high‐field piezoelectric coefficient (d33* = 570 pm/V). In this work, the same composition was synthesized in thin film embodiments on platinized silicon substrates via chemical solution deposition. Overdoping of volatile cations in the precursor solutions was necessary to achieve phase‐pure perovskite. An annealing temperature of 700°C resulted in good ferroelectric properties (Pmax = 52 μC/cm2 and Pr = 12 μC/cm2). Quantitative compositional analysis of films annealed at 650°C and 700°C indicated that near ideal atomic ratios were achieved. Compositional fluctuations observed through the film thickness were in good agreement with the existence of voids formed between successive spin‐cast layers, as observed with electron microscopy. Bipolar and unipolar strain measurements were performed via double laser beam interferometry and a high effective piezoelectric coefficient (d33,f) of approximately 75 pm/V was obtained.  相似文献   

18.
The 0.45Bi(Mg0.5Ti0.5)O3–(0.55 ? x)PbTiO3x(Bi0.5Na0.5)TiO3 (BMT–PT–xBNT) ternary solid solution ceramics were prepared via a conventional solid‐state reaction method; the evolution of dielectric relaxor behavior and the electrostrain features were investigated. The XRD and dielectric measurements showed that all studied compositions own a single pseudocubic perovskite structure and undergo a diffuse‐to‐relaxor phase transition owing to the evolution of the domain from a frozen state to a dynamic state. The formation of the above dielectric relaxor behavior was further confirmed by a couple of measurements such as polarization loops, polarization current density curves, as well as bipolar strain loops. A large strain value of ~0.41% at a driving field of 7 kV/mm (normalized strain d33* of ~590 pm/V) was obtained at room temperature for the composition with x = 0.32, which is located near the boundary between ergodic and nonergodic relaxor. Moreover, this electric field‐induced large strain was found to own a frequency‐insensitive characteristic.  相似文献   

19.
The photoluminescence and temperature sensing properties based on down‐shifting emission of Pr3+‐doped (K0.5Na0.5)NbO3yCaTiO3 (KNN: yCT) diphasic materials were systematically investigated. Under 447‐nm excitation, Pr3+‐doped KNN: yCT samples exhibited significantly enhanced red emission at 603 nm assigned to 1D23H4 transitions of Pr3+ ions. The red emission intensities reached the optimum value with y = 0.05 near the polymorphic phase transition region. The origin of the enhanced red emission is mainly ascribed to the doping‐induced lattice symmetry change. The energy level transitions from the typical ff transitions to the valence‐to‐conduction transitions were observed as CaTiO3 concentration increases above a critical concentration of y = 0.05. Furthermore, the sample with y = 0.05 also possessed excellent temperature response properties in a wide temperature range 300–473 K and the maximum sensing sensitivity was 0.016 K?1. The Pr3+‐doped (K0.5Na0.5)NbO3yCaTiO3 red emission materials with admirable intrinsic piezoelectric properties may have important technological promise in novel multifunctional devices.  相似文献   

20.
Searching for suitable sintering aids for ceramic materials is important and tedious work. In this study, we introduce a simple and effective method, named liquid phase screening method (LPSM), for rapidly screening sintering aids for KNN ceramics. By measuring the structure and properties, we demonstrated that the suitable sintering aids for KNN can be quickly determined by LPSM. The new sintering aids found by this method, GeO2 and borax which have not been reported before, lead to improved properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号