共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
从GMPLS的基本概念出发,通过与MPLS的比较,分析了因其交换粒度、网络结构的变化所带来的主要问题,并通过建立LSP的关系模型,理清了不同交换粒度、不同LSP以及不同业务间的关系,并对一种支持多层LSP的解决方案进行了分析。 相似文献
3.
GMPLS(通用多协议标签交换)是MPLS技术向光网络发展的产物。描述GMPLS和MPLS控制平台的区别,介绍引用GMPLS协议作为控制平面的OBS网络。提出的网络结构是在OBS的突发控制包中用通用标签代替源节点和目的节点地址,并使用GMPLS协议栈对路由协议、信令功能以及链路管理协议进行增强和扩展以便更好地支持OBS网络。 相似文献
4.
未来骨干网同时承载巨大的IP流量和话音流量,需要新的流量工程解决方案,提高资源利用率,保证服务质量。本文首先介绍了MPLS和GMPLS,然后讨论用GMPLS解决流量工程问题的途径。 相似文献
5.
GMPLS(通用多协议标签交换)是MPLS技术向光网络发展的产物。它有效地实现了IP和WDM光网络的无缝结合,是IP over WDM发展的一种趋势。本文主要介绍了GMPLS通用标签的特点及实现形式,LSP(标签交换路径)技术,以及链路管理协议LMP的特点及实现方法。 相似文献
6.
文中首先比较了GMPLS和SDH/SONET的保护和恢复机制,接下来阐述了GMPLS用于增强网络的保护与恢复能力的信令机制,最后对网络的保护和恢复机制如何使用GMPLS信令来实现进行了详细的分析和讨论. 相似文献
7.
通用多协议标签交换技术是一种优秀的控制面技术,它在路由、信令、链路管理和故障管理等方面都具有鲜明的特点和优势.本文首先介绍了通用多协议标签交换的基本概念,然后从故障检测和定位、保护和恢复技术、研究进展和发展趋势等方面对基于GMPLS的故障管理技术进行深入的讨论和分析. 相似文献
8.
基于光GMPLS接入网中区分服务的QoS研究 总被引:2,自引:0,他引:2
通过配置区分服务体系实现基于光GMPLS环状网络的QoS测量,涉及到不同的实时多媒体服务.讨论并分析区分服务结构的三种服务级别的特性.仿真结果表明,在网络过载的情况下,快速转发类和保证转发类都有很好的保护作用.加速转发类适合于实时服务,而最大努力类对任何类型的服务}生能都非常低,同时保证转发非常适合于视频流. 相似文献
9.
10.
作为下一代互联网关键技术之一的光突发交换(OBS)技术已经受到业界的广泛关注.但是在网络中还需要一个成熟的控制面技术支持,为此提出了了基于GMPLS控制面的OBS网络体系,并对GMPLS体系结构的关键技术进行了介绍. 相似文献
11.
GMPLS(通用多协议标记交换)是MPLS技术向光网络发展的产物。它有效地实现了IP和WDM光网络的无缝结合,是IPoverWDM发展的一种趋势。本文主要介绍了GMPLS通用标记的特点及实现形式,LSP(标记交换路径)技术,以及链路管理协议LMP的特点及实现方法。 相似文献
12.
SDH逻辑子网的研究 总被引:2,自引:0,他引:2
本文首先引入SDH逻辑子网的概念,接着论述SDH逻辑子网定义和分割原则,简述了SDH逻辑子网的管理、保护所带来的好处,最后以自愈环和相交环为例来说明SDH逻辑子网的分割、管理与保护。 相似文献
13.
GMPLS 通用多协议标签交换 总被引:1,自引:0,他引:1
GMPLS是MPLS向光网络扩展的产物,实现了IP和光网络的融合,能支持分组交换、时分交换、波长交换和光纤交换,很好地满足智能光网络控制面的需要。对GMPLS的标签、层次化LSP、路由与寻址、信令、链路管理以及存在的问题等方面进行了分析。 相似文献
14.
LSP的保护与恢复技术 总被引:1,自引:0,他引:1
标记交换路径(LSP)的保护与恢复是MPLS流量工程(TE)技术的一项重要应用,文中描述了LSP保护与恢复的工作原理,以及它在ATM交换机中的实现方法。 相似文献
15.
In dynamic IP-over-WDM networks efficient fault-management techniques become more difficult since as demands change with time the optimal logical topology varies as well. Changes in the virtual topology should be done with care because working IP LSPs routed on top of a virtual topology should not be interrupted. Reconfiguration of the virtual topology may also affect precomputed backup IP LSPs to be activated in case of failure meaning that backup IP LSPs would need to be recomputed after any change in the virtual topology. A good sense solution can be the dimensioning of the virtual topology for a worst case traffic scenario, having as goal the minimization of the network cost, for example, and then route dynamic IP LSPs on this virtual topology. The virtual topology would remain unchanged as long as possible, that is, until changes in the virtual topology are considered to bring considerable benefits. Since data services over IP are essentially of a best-effort nature, protection could be provided, using IP LSP protection, only when bandwidth is available in the virtual topology. The computation of backup IP LSPs does not interfere with working IP LSPs meaning that no service interruption will exist. Such a strategy, considered in this paper, allows resources to be used efficiently, since free bandwidth is used for backup purposes, while the normal delivery of traffic is guaranteed in peak traffic situations although having no protection guarantees. Our main objective is to quantify the spare capacity, which can be used for restoration (backup) purposes, over a virtual topology designed and optimized to carry a traffic scenario with no survivability and QoS requirements. We analyse the maximum protection (MP) problem in such IP-over-WDM network environment. Protection is provided to IP LSP requests whenever possible through bandwidth reservation in a backup IP LSP on the virtual topology. Besides the mathematical formalization of the MP problem, an upper bound and heuristic algorithms are proposed and evaluated. The traffic considered includes IP LSPs of different granularities and is the worst case traffic scenario for which the network should be dimensioned. 相似文献
16.
17.
In the context of an optical network GMPLS can be used to provide network robustness to faults through end-to-end path protection techniques. In this paper, we present a dynamic distributed model supporting five different classes of protection, including protection against single and double fault, with and without sharing of backup bandwidth. Beyond link and node failures we also consider protection against shared risk link group (SLRG) failure. In this paper, we briefly describe the protection model and the underlying algorithms for route selection and backup bandwidth sharing. After that we face the following issue: Which subset out of the five possible protection classes is convenient for an operator to support on the same network infrastructure? To answer this question it is fundamental to have a clear view of the trade-offs between the costs and the performances associated to each class. To achieve that we carried out an extensive performance analysis by means of simulations. For each protection class, we evaluated two fundamental performance metrics: the recovery probability under multiple faults, and the average per-demand resource usage. On the basis of such results, we are able to identify some basic guidelines driving the choice of the more convenient subset of protection classes to be implemented within a single network. 相似文献