首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terahertz (0.1–10 THz) wireless communication will be the future technology to reach a top-notch data rate. THz is one of the most promising candidates for 6G systems because it provides enormous bandwidth, up to 100 GHz, and a massive data rate of up to 1 Tbps. THz antennas, antenna arrays, and MIMO antenna arrays in 6G are hot research topics for implementing 6G wireless communication systems. The 6G aims to continue to enhance the features of the 5G as it is capable of achieving the maximum high-speed data rate, excellent reliable communication, massive connectivity, and very low latency connectivity. The 6G requirements need high-gain antenna arrays and MIMO antenna arrays to combat the effect of atmospheric losses in high frequencies. An in-depth discussion of the planar THz antennas that have been extensively used in THz applications like imaging, sensing, and Internet-of-Things (IoT) has been conducted. The study of the THz antennas, antenna arrays, and MIMO antennas on different conducting materials such as copper and graphene, which are designed on different dielectric substrates such as polyimide, quartz, liquid crystalline polymer, and polytetrafluoroethylene, has been carried out in detail. Metamaterial, photoconductive, plasmonic antennas, and THz beamforming are significant parts of THz communications. This paper also provides antennas and antenna arrays based on them.  相似文献   

2.
提出一种应用于5G智能手机中结构紧凑的16单元多频段多输入多输出(MIMO)天线阵列。该多天线系统由8个紧凑天线阵列对组成,为了预留2G/3G/4G天线的布局空间,这8个天线阵列印刷在智能手机的两侧边上。每个天线阵列对由2个紧凑的间隙耦合环路天线组成,分别布置在系统板的上、下两侧;其中上侧天线工作在LTE band 46(5 150~5 925 MHz),下侧天线覆盖LTE band 42/43(3 400~3 800 MHz)。测试结果表明该天线阵列具有良好的阻抗匹配和隔离性能。同时还对MIMO一些包络相关系数进行了研究分析。最后研究了人手和头对整个天线性能的影响,仿真结果表明,在日常各种使用情况下,该天线阵列也具有良好的辐射特性。  相似文献   

3.
MIMO systems are characterized by their maximum available capacity, which is reduced if there is correlation between the signals on different channels. The correlation is primarily caused by mutual coupling between the elements of the antenna arrays on both the receiving and transmitting sides. Similarly, diversity antennas can be characterized by a diversity gain that also is affected by mutual coupling between the antennas. We explain how such MIMO and diversity antennas with mutual coupling can be analyzed by classical embedded element patterns that can be computed by standard computer codes. In the MIMO example under investigation, the mutual coupling reduces both correlation, which increases the capacity, and radiation efficiency, which decreases it, and the combined effect is a net capacity reduction. We also explain how the radiation efficiency, diversity gain, correlation, and channel capacity can be measured in a reverberation chamber. The measurements show good agreement with simulations.  相似文献   

4.
In this paper, a novel multiple antenna system framework, which combines smart antennas (SA) with multiple-input-multiple-output (MIMO) at the transmitter, is proposed. The downlink capacity of the single-user SA-MIMO wireless systems is investigated. The joint optimization problem corresponding to the capacity is deduced. After that, upper bounds of the capacity are given in general case and in the case of equal power allocation, respectively. Furthermore, in the case of equal power allocation and the same direction of departure from one transmit smart antenna to all antenna arrays at the receiver the closed-form expression of the capacity is obtained. Some numerical results are given to show that smart antennas can bring significant capacity gain for the MIMO systems due to the smart antennas gain, without additional spatial degrees of freedom, especially at high SNR with strong correlation among the MIMO channel links or at low SNR.  相似文献   

5.
一种MIMO智能天线融合方法研究   总被引:1,自引:0,他引:1  
马优  郑植  周玉龙 《通信技术》2010,43(5):173-175
提出一种采用波束调度策略的MIMO与智能天线融合设计方案,用以解决MIMO传输中空域相关性问题。融合方案在天线结构上以智能天线单元组建MIMO阵列,智能天线单元之间协同工作。分析了采用波束调度时的MIMO矩阵构成及其合并接收方式,给出一种波束间空域相关性的计算方法。仿真结果表明,在小角度扩展条件下,同指向的波束相关性与全向阵元相关性相似,而波束调度策略具有良好的去相关性,能有效提高MIMO信道容量。  相似文献   

6.
A novel way of exploiting higher modes of antennas as diversity branches in multiple-input-multiple-output (MIMO) systems is introduced. Essentially, antennas employing multiple modes offer characteristics similar to an antenna array, through multiple modes and using only a single element. The physical mechanism that yields different received signals is the fact that each mode has a different radiation pattern. Analytical expressions for the correlation between signals received by different modes are presented for a biconical and a circular microstrip antenna that employs higher order modes. It is found that the correlation is low enough to yield a significant diversity gain. Furthermore, the channel capacity of a MIMO system using a multimode antenna, i.e., an antenna employing multiple modes, is found to be comparable to the capacity of an array. Since only one element is needed, the multimode antenna offers several advantages over traditional arrays, and is an interesting antenna solution for future high capacity MIMO systems.  相似文献   

7.
Massive MIMO和波束赋形是5G的一项关键技术。5G将LTE时期的MIMO进行了扩展和延伸,即LTE的MIMO最多8天线,到5G扩增为16/32/64/128天线,被称为“大规模”的MIMO。本案通过对不同场景Massive MIMO波束调整方案进行研究,输出场景化的设置方案,以期为后期Massive MIMO优化提供参考。  相似文献   

8.
This paper proposes a simple yet accurate method for estimating the antenna correlation coefficient (ACC) of a high-order multiple-input multiple-output (MIMO) antenna. The conventional method employed to obtain the ACC from three-dimensional radiation patterns is costly and difficult to measure. An alternate method is to use the S-parameters, which can be easily measured using a network analyzer. However, this method assumes that the antennas are highly efficient, and it is therefore not suitable for lossy MIMO antenna arrays. To overcome this limitation, we define and utilize the non-coupled radiation efficiency in the S-parameter-based ACC formula. The accuracy of the proposed method is verified by the simulation results of a 4-port highly coupled lossy MIMO array. Further, the proposed method can be applied to N-port arrays by expanding the calculation matrix.  相似文献   

9.
协作MIMO通过多个单天线节点的相互协作构造多发射天线,以此形成一种虚拟MIMO多天线阵列获得空间分集增益。考虑到协作MIMO特点,天线间采用分布式空时编码进行编码协作。文章研究了协作MIMO中基于分布式空时码(DSTC)的分集复用折衷(DMT)新方案,该方案通过推导两种DSTC的中断概率与分集增益表达式,结合两类DSTC的DMT策略,根据改变复用增益阈值自适应获得最佳DMT与中断性能。数值仿真表明,所提的DMT策略可以逼近协作MIMO的DMT上限,协作节点采用该策略的中断性能仅次于上限的中断性能。在多节点构成协作MIMO网络分布式空时编码协作中,提出的DMT新方案可使系统高效地获得协作分集增益与中断性能。  相似文献   

10.
We analyze asymptotic ergodic capacity of multidimensional vector-sensor array MIMO (PMD-MIMO) channels established by the use of dual-polarized antennas in the form of 1D, 2D and/or 3D MIMO arrays. Based on the identification of the decomposition of PMD-MIMO channels into multiple independently-fading and scaled classical MIMO channels in parallel, we consequently derive corresponding asymptotic ergodic capacities analytically via tools out of free probability theory. The analysis of derived asymptotic ergodic capacity expressions in terms of antenna locus aspect ratio ?, average symbol SNR per antenna ˉ?s and cross-polar discrimination XPD as well as comparison with asymptotic ergodic capacity of classical MIMO channels present important gains in using compact multidimensional vector-sensor array MIMO systems in asymptotic regimes.  相似文献   

11.
This paper presents the relationship between antenna structures and the performance of two kinds of compact MIMO antennas in order to find critical factors that affect the capacity of MIMO systems. The relationship between the channel capacity and some factors (antenna efficiency, mutual coupling, correlation) are analyzed based on experimental data under indoor Rayleigh fading environment. Antenna elements mounted in two different configurations (common and separated ground plane) with antenna spacing varying, were investigated at the frequency of 2.6 GHz band experimentally. The good characteristics in the case of separated ground plane show that the proposed antennas, even with small spacing, can still achieve high capacity to combat multipath fading and deliver higher data rates. It demonstrates that multiple antennas could be mounted onto small terminal devices without much loss of capacity. It is also found that mutual coupling has positive impact which could reduce channel correlation; negative effect which could degrade antenna efficiency. In the indoor multipath-rich environment, the negative effect is dominant.  相似文献   

12.
We consider multiple-input multiple-output (MIMO) radar systems with widely spaced antennas. Such antenna configuration facilitates capturing the inherent diversity gain due to independent signal dispersion by the target scatterers. We consider a new MIMO radar framework for detecting a target that lies in an unknown location. This is in contrast with conventional MIMO radars which break the space into small cells and aim at detecting the presence of a target in a specified cell. We treat this problem through offering a novel composite hypothesis testing framework for target detection when 1) one or more parameters of the target are unknown and we are interested in estimating them, and 2) only a finite number of observations are available. The test offered optimizes a metric which accounts for both detection and estimation accuracies. In this paper, as the parameter of interest we focus on the vector of time-delays that the waveforms undergo from being emitted by the transmit antennas until being observed by the receive antennas. The analytical and empirical results establish that for the proposed joint target detection and time-delay estimation framework, MIMO radars exhibit significant gains over phased-array radars for extended targets which consist of multiple independent scatterers. For point targets modeled as single scatterers, however, the detection/estimation accuracies of MIMO and phased-array radars for this specific setup (joint target detection and time-delay estimation) are comparable.   相似文献   

13.
A novel compact Swastika shaped patch antenna is designed in the present work, which can be used for Multiple Input Multiple Output (MIMO) systems. The proposed two element MIMO system resonates at a triband of 3.3 GHz, 5.8 GHz, and 7.1 GHz with an improved impedance bandwidth of 37% and a reduced mutual coupling of ?33 dB. These results are better compared to a normal E shaped patch antenna designed with same size and thickness, achieved without using any additional decoupling methods. A 2??2 MIMO system employing the Swastika shaped patch antennas is analyzed using computational electromagnetic ray tracing software for an indoor environment. The results show an improvement in the capacity compared to a 2??2 MIMO system developed with dipole antennas. The proposed antenna is a good choice for MIMO systems operating for several Ultra WideBand (UWB) applications.  相似文献   

14.
提出了一种利用最小冗余非均匀线性阵列对多输入多输出(MIMO)雷达系统进行阵列配置优化从而提高参数估计性能的方法。文中从MIMO雷达信号模型出发,分析了均匀线性阵列与非均匀线性阵列两种配置下,MIMO雷达系统获得的虚拟阵元数的差异,给出了一种在物理阵元数量较大时最小冗余非均匀线性阵列的生成方法。仿真结果表明:最小冗余线性阵列能够利用较少的物理阵元个数获得与均匀线性阵列相同的参数估计性能。而在物理阵元个数相同的情况下,最小冗余非均匀线性阵列MIMO雷达可以获得更多的虚拟阵元、更好的参数估计性能和更低的克拉美·罗界。  相似文献   

15.
In this paper, we analyze the performance of novel wearable multiple-input-multiple-output (MIMO) systems, which consist of multiple electrotextile wearable antennas distributed at different locations on human clothing. For wearable applications, a semidirectional radiation pattern of the wearable patch antenna is preferred over an omnidirectional radiation of conventional dipole antennas to avoid unnecessary radiation exposure to the human body and radiation losses. Additionally, the spatial distribution of the antennas is not constrained as a typical handheld unit. Through theoretical modeling and simulation, the wearable MIMO system is shown to demonstrate a significantly higher channel capacity than a conventional system on a handheld platform (e.g., a compact dipole array or a single dipole), due to enhanced spatial diversity and antenna pattern diversity. The unique effects of antenna directivity and location on the MIMO system capacity are investigated in terms of antenna correlation and effective gain under different wireless channel models. The advantage of a wearable system over a conventional system was further confirmed by detailed physical modeling through the combination of full-wave electromagnetic and ray-tracing simulations. Finally, complex channel response matrices were measured to characterize the performance of a body-worn MIMO system in comparison with a reference full-size dipole antenna. The 319% improvement in 10% outage capacity for the body-worn system over the reference system made of a full-size dipole antenna is consistent with the 288% improvement projected by theoretical modeling and the average 300% improvement found in the physical simulation of two typical indoor scenarios.  相似文献   

16.
In MIMO systems the antenna array configuration in the BS and MS has a large influence on the available channel capacity. In this paper, we first introduce a new Frequency Selective (FS) MIMO framework for macro-cells in a realistic urban environment. The MIMO channel is built over a previously developed directional channel model, which considers the terrain and clutter information in the cluster, line-of-sight and link loss calculations. Next, MIMO configuration characteristics are investigated in order to maximize capacity, mainly the number of antennas, inter-antenna spacing and SNR impact. Channel and capacity simulation results are presented for the city of Lisbon, Portugal, using different antenna configurations. Two power allocations schemes are considered, uniform distribution and FS spatial water-filling. The results suggest optimized MIMO configurations, considering the antenna array size limitations, specially at the MS side.  相似文献   

17.
Various normalizations of the MIMO channel matrix are discussed from a physical perspective. It is demonstrated that the physics of antenna arrays and propagation channel should be taken into account when normalization is chosen, so that SNR has proper physical meaning, the conclusions are physical and correspond to realistic systems. The antenna array geometry and the transmission strategy (coherent/non-coherent) limits the choice of normalization and determines how the capacity and other performance metrics scale with the number of antennas, which is more pronounced for densely-populated antenna arrays. This is especially important for an asymptotic analysis, when the number of antennas increases to infinity. Limitations of such analysis from the physical perspective are pointed out.  相似文献   

18.
A MIMO multi-antenna system of compact double uniform circular array (DUCA) in three dimensional direc-tional frequency non-selective Rayleigh fading channel was analyzed and investigated. Equivalent network model of MIMO multi-antenna array considering MC effect was established, general expressions of correlations were derived and the relationship between correlations with and without MC was classfied. Then, the results were compared with general uniform linear array (ULA) and uniform circular array (UCA). It was concluded that the deployment of antennas plays a decisive role in correlations between antennas. The research has a good sense on designation of spatial massive MIMO multi-antenna array and system optimization.  相似文献   

19.
MIMO systems are usually associated with high scattering isotropic propagation while the use of directive antennas is associated with free space conditions. We found outdoor-indoor channels to be in between these two extremes, in the sense that we observed directivity - and - MIMO gain, for the same ensemble of channels. Our observation is based on measurements with directive (8 dB) and dipole antennas. Median MIMO capacities were found to be about 80% of the ideal (Rayleigh i.i.d.), at 5 dB Signal to Noise Ratio (SNR), for both types of antennas. Using properly aimed directive antennas, the SNR was found on average to be 5.4 dB above that obtainable with dipoles, somewhat less than the 7 dB antenna gain difference. Thus, isotropic propagation, which would have negated directivity gains, cannot be justified in general. We empirically established that aiming for largest received power is the best array pointing strategy with directive antennas. Combining MIMO processing and angular search resulted on average in gains of 70% over the median capacities obtained with dipoles. Therefore it may in some cases be convenient to arrange subgroups of antennas for beamforming, and then process the thus reduced number of radio channels for MIMO gain.  相似文献   

20.
A survey of possible applications of high-temperature superconductors (HTSs) to antennas and antenna feed networks is presented. The frequency range considered is 1 MHz for 100 GHz. Three antenna application areas seem appropriate for HTS material: electrically small antennas and their matching networks; feed and matching networks for compact arrays with enhanced directive gain (superdirective arrays); and feed networks for millimeter-wave arrays. Preliminary experimental results are presented on YBaCuO and TlBaCaCuO 500 MHz half-loop antennas that show an increase in radiation efficiency (compared with a copper antenna at the same temperature) by a factor of 5 for the HTS antennas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号