首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

2.
Collision of droplets; counter-current spray dryer; drying rate; heat transfer; nonphosphated detergent; spray drying

The spray drying method of non-phosphated granular detergents is studied to decrease the amount of agglomerate particles. The formation of agglomerates is mainly influenced by the concentration of droplets in spray cloud and the water content of droplets at the time of collision. The overlaps of different spray clouds should be de- creased.

The drying rate near the nozzle zone is considerably faster than that calculated by Ranz-Marshal's equation. According to these phenomena, “Multi-stage spray drying” is developed, which is characterized by in stalling plural spraying stages in a spray dryer.

Consequently, non-phosphated detergents are manufactured with the same powder properties and productivity as phosphated detergents.  相似文献   

3.
In a co-current pilot plant spray dryer measurements were done of the airflow pattern (no spray) and the temperature and humidity pattern (water spray). These patterns were simulated with a computational fluid dynamics package (FLOW3D)

The measured air velocities showed large fluctuations. The measured and predicted flow pattern showed good agreement qualitatively, but the measured profiles showed less variation than the predicted ones

The measured temperatures and humidities showed good agreement in large areas of the dryer, but the agreement in the zone near the central axis leaves room for improvement.  相似文献   

4.
High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapour, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs, As the surface becomes dry, the drying front moves towards the centre of the particle and an overpressure is simultaneously built up which affects the drying process

The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in Dure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.  相似文献   

5.
S. Pang  M. Dakin 《Drying Technology》1999,17(6):1135-1147
Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

6.
A model for a pneumatic conveying dryer is presented. Although the main emphasis is put on superheated steam drying of wood chips, it can be used for other porous materials as well

The model includes a comprehensive two-dimensional model for the drying of single wood chips which accounts for the main physical mechanisms occurring in wood during drying. The external drying conditions in a pneumatic conveying dryer were calculated by applying the mass, heat and momentum equations for each incremental step in dryer length. A plug flow assumption was made for the dryer model and the single particle and dryer models were solved in an iterative manner. The non-spherical nature of wood chips were accounted for by measuring the drag and heat transfer coefficients

Model calculations illustrate the complex interactions between steam, particles and walls which occur in a flash dryer. The drying rate varies in a very complex manner through the dryer. The internal resistance to mass transfer becomes very important in The drying of less permeable wood species such as spruce. Two effects were observed as the particle size was increased: firstly the heat transfer rate decreased, and secondly the residence time increased. To some extent, these effects compensate for each other, however, the net result is that larger chips have a higher final moisture content.  相似文献   

7.
The peculiarities of fruit and vegetable powders production technology based on spray & convective drying methods are shown.

The experimental data related to the drying kinetics of apple juice droplets as well as the production flow diagrams and the performance of a spray dryer intended for the treatment of hygroscopic pasty products are presented.  相似文献   

8.
9.
《Drying Technology》2008,26(4):476-486
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Rep1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

10.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

11.
The superheated steam drying at reduced pressure is performed, and the effects of operational conditions such as drying pressure and temperature on the drying characteristics are examined. In order to obtain the basic guideline for the design of the superheated steam dryer at reduced pressure, the heat flux to sample was calculated and the optimal conditions were estimated.

After the sample temperature reached at the boiling point, the temperature was maintained at the boiling point and the drying rate became almost constant. Once the sample was dried out, the temperature suddenly increased up to the drying gas temperature. From the calculation of combined heat flux, the followings were found. The contribution of radiative heat transfer to the combined heat flux became larger as the drying pressure was lower. The combined heat flux had a maximum value against the drying pressure. The optimum drying pressure, which gave the maximum heat flux, became lower as the drying gas temperature decreased. It was found that reduction in the drying pressure is effective for the enhancement in drying performance.  相似文献   

12.
Drying subbituminous coal has never been practiced commercially. The commercial dryers built to date have been designed for drying surface moisture in conjunction with upstream coal preparation facilities. This type of drying is mainly controlled by input energy and the basis of the design is an energy balance. In drying inherent moisture from subbituminous coal, the thermal conductivity of the coal and the diffusion of molecular water within coal particles impose limitations on the process conditions. Energy input and solids residence time in the dryer have to be controlled properly for simultaneously balancing the heat and mass transfer within the coal particles. Improper control of either parameter can cause fires and explosions during the key steps of the drying process—drying and cooling

In parallel to the Anaconda coal drying pilot plant program, a cross-flow, fluid-bed coal drying/cooling process simulator was developed for: (1) understanding the drying phenomena on an individual particle basis; (2) analyzing potential risks and safety limits, and (3) designing the Anaconda pilot plant program

The development of the process simulator was based on both first principles and laboratory data and can be divided into two phases:

1 Development of a semi-mechanistic drying model for Powder River Basin subbituminous coal employing an analytical solution of the diffusion equation

2.Formulation of a fluid-bed cross-bed cross-flow dryer/cooler simulator employing simultaneous heat and mass transfer

This model was validated against process variables data taken on a 4 tph pilot plant. An operable range, or process envelope, has been developed through the pilot plant experience and the process simulation study. Based on the model predictions, an uncertainly range was defined in the design recommendations of a pioneer coal drying plant in scale-up.  相似文献   

13.
Imatran Voima Oy together with Technical Research Centre of Finland has carried out experimental research on fuel drying at high pressure steam atmosphere. The pilot dryer is a pressurized flash dryer. Since its commissioning in 1991, the dryer has been used for drying experiments of peat and wood biomass for about 1000 h. The dryer operates at 23 bar pressure steam atmosphere with capacity of abt. 1000 kg/h of wet feedstock.

The developed high pressure steam dryer is planned to be used in a power plant process suitable for wet fuels as peat, biomass, and brown coal. The process is based on the connection of a pressurized fuel dryer, a pressurized gasifier, and a gas turbine. The integration of the high pressure steam dryer to the process increases the power generating efficiency of the process essentially.  相似文献   

14.
This work studies the compatibility and suitability of a combined inversion temperature and pinch analysis with the process selection for air and superheated steam spray drying of milk solids. The inversion temperature is a good starting point for an energy analysis because it is a simplified rate-based approach to comparing the steam and air drying systems. pinch analysis enables process integration, at least on a heat recovery and heat exchanger network level.

The resulting inversion temperature for the studied system was estimated as 182°C for the dryer inlet temperature. However, mass and energy balances showed that a minimum inlet temperature for spray drying of 184°C was required for the superheated steam dryer in order to ensure that the outlet solids temperature above the dew point temperature.

The inversion temperature is still very relevant in the early stages of a design process because it allows a quick assessment of which drying medium should result in a smaller dryer. It was evident that the steam system is better from an energy perspective because of the recoverable latent heat of the water vapor carried out of the dryer with the recycled steam. The steam system has between 82 and 92% of thermal energy recovery potential as condensable steam, compared with 13–30% energy recovery of the air system. However, other important design and operational factors are not discussed here in detail.

Combining the inversion temperature and pinch analysis suggests that superheated steam drying both gives better energy recovery and is likely to give smaller dryers for all operational conditions.  相似文献   

15.
In malt production drying operation plays an important role in the total processing cost, however there are not many studies on malt drying modeling and optimization.

In this paper a deep layer malt drying mathematical model in the form of four partial differential equations is presented.

To determine drying constants, malt thin layer drying experiments at several air temperatures and relative humidities were made.

The model were validated at industrial scale. The greatest energy savings, approximately 5 5% in fuel and 7.5% in electric energy, were obtained by an additional (and increased) air recirculation, which is carried out during the last 6 hours of the drying process and a significant decrease of air flow-rate during the last 6 hours of the drying process.  相似文献   

16.
The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying with in certain industrial sectors where the technique has been deemed to hove special opponunities.

In the modelling scction the mass and heat transfer proceases are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literslure are presented.

The applications discussed involve drying of fuels with high moisture contcna, cattle feed exemplified by sugar beet pulp. lumber. paper pulp. paper and sludges.

Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current insrallation in Sweden. the exergy losses. as manifested by loss of co-generation cupacity. are discussed. The energy saving potentid when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated.

Mechanical vapour recompression applied to steam drying is analysed with reference to reponed dau from industriul plsnts. Finally. environmcntul advantages when using steam drying are presented.  相似文献   

17.
18.
A drier project necessitates the efficient formulation of the behaviour of product samples. When the temperature gap is great, the drying rate must make explicit the influence of the thnc air parameters : temperature, moisture, velocity. The case of the grape demonsnates that the adimensional expression formulated by Van Meel and Keey. must be completed in order to be adjusted to experiments.

The hot air drier model composed of the equations of conservation and thin layer drying rate can sometimes be simplified into a form of analytic integral equation around the drying rate. W e drying can be considered generally as adiabatic.

Two examples of grape driers are presented and show the value of simplified tools for the project. In a tunnel drier with a high air temperature one can speak of the celerity of a drying front which progress along the trolleys. In a short drier connected to an agricultural solar collector, the integration of the drying rate takes into account the variation of the meteorological data.  相似文献   

19.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

20.
The hygroscopic porous particle was used as the fluidizing particle for the superheated steam fluidized bed drying under reduced pressure. A relatively large material was immersed in the fluidized bed as the drying sample. The drying characteristics of the sample were examined experimentally and the results were compared with those in the case of inert particle fluidized bed.

The water transfer from the sample to the fluidizing particle bed in the case of hygroscopic porous particle facilitated the drying regardless of pressure and temperature in the drying chamber. The increment degree of the sample temperature at the earlier period of drying was smaller in the case of hygroscopic porous particle than in the case of inert particle, and the phenomenon was more remarkable in the case of superheated steam than in the case of hot air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号