共查询到20条相似文献,搜索用时 15 毫秒
1.
Yangqiu Song Changshui Zhang 《Multimedia, IEEE Transactions on》2008,10(1):145-152
In this paper, we propose an information fusion framework for the semi-supervised distance-based music genre classification problem. We make use of the regularized least-square framework as the basic classifier, which only involves the similarity scores among different music tracks. We present a similarity score that multiplies different scores based on different distance measures. Particularly the distance measures are not restricted to the Euclidean distance. By adding a weight to each single distance based score, we propose an expectation-maximization (EM) algorithm to adaptively learn the fusion scores. Experiments on real music data set show that our approach can give promising results. 相似文献
2.
语音/音乐自动分类中的特征分析 总被引:16,自引:0,他引:16
综合分析了语音和音乐的区别性特征,包括音调,亮度,谐度等感觉特征与MFCC(Mel-Frequency Cepstral Coefficients)系数等,提出一种left-right DHMM(Discrete Hidden Markov Model)的分类器,以极大似然作为判别规则,用于语音,音乐以及它们的混合声音的分类,并且考察了上述特征集合在该分类器中的分类性能,实验结果表明,文中提出的音频特征有效,合理,分类性能较好。 相似文献
3.
Temporal Integration for Audio Classification With Application to Musical Instrument Classification 总被引:1,自引:0,他引:1
Joder C. Essid S. Richard G. 《IEEE transactions on audio, speech, and language processing》2009,17(1):174-186
Nowadays, it appears essential to design automatic indexing tools which provide meaningful and efficient means to describe the musical audio content. There is in fact a growing interest for music information retrieval (MIR) applications amongst which the most popular are related to music similarity retrieval, artist identification, musical genre or instrument recognition. Current MIR-related classification systems usually do not take into account the mid-term temporal properties of the signal (over several frames) and lie on the assumption that the observations of the features in different frames are statistically independent. The aim of this paper is to demonstrate the usefulness of the information carried by the evolution of these characteristics over time. To that purpose, we propose a number of methods for early and late temporal integration and provide an in-depth experimental study on their interest for the task of musical instrument recognition on solo musical phrases. In particular, the impact of the time horizon over which the temporal integration is performed will be assessed both for fixed and variable frame length analysis. Also, a number of proposed alignment kernels will be used for late temporal integration. For all experiments, the results are compared to a state of the art musical instrument recognition system. 相似文献
4.
音乐主要包括形成节奏的冲击成分和形成韵律的和声成分,直接从音乐信号中提取特征会受到这2种成分相互影响。利用节奏与和声在时频平面具有不同规律的特点,通过对音乐信号进行谱图滤波,分离出音乐中的打击成分与和声成分。对打击与和声谱图分别进行小波调制,得到表现音乐节奏和韵律谱规律的调制谱特征,将其作为音乐流派分类中的长时特征。仿真实验结果表明,分离后的打击与和声成分谱图清晰地表征了音乐节奏和韵律的特点和规律;对8类音乐流派提取打击与和声调制谱特征,经线性鉴别分析降维后利用支持向量机进行分类,分类准确率达到73.54%。 相似文献
5.
分类问题的一种可伸缩特征选择算法 总被引:4,自引:0,他引:4
特征选择是数据挖掘分类中的一个重要问题.该文推导出一种新的衡量特征与类别相关度的测度SCD即描述特征取值序列类分布的CV系数,利用该测度给出一种线性的可伸缩特征选择算法StaFSOS,并证明了在类别数为2时,SCD测度满足分支界限法的单调性;给出了StaFSOS的一个完备形式——BBStaFS.在12个标准数据集中,StaFSOS算法得出的结果和目标集几乎一致,而StaFSOS的效率高于其它算法;而在另1个中,BBStaFS算法得出了准确结果.在用1000个样本20个特征的真实数据进行的测试中,StaFSOS运行时间是目前较快的GRSR的1/2,得出的特征集准确有效. 相似文献
6.
7.
This paper presents a new form of exemplar-based learning, based on a representation scheme called feature partitioning, and a particular implementation of this technique called CFP (for Classification by Feature Partitioning). Learning in CFP is accomplished by storing the objects separately in each feature dimension as disjoint sets of values called segments. A segment is expanded through generalization or specialized by dividing it into sub-segments. Classification is based on a weighted voting among the individual predictions of the features, which are simply the class values of the segments corresponding to the values of a test instance for each feature. An empirical evaluation of CFP and its comparison with two other classification techniques that consider each feature separately are given. 相似文献
8.
Neural Processing Letters - The rapid development of remote sensing technology let us acquire a large collection of remote sensing scene images with high resolution. Aerial scene classification has... 相似文献
9.
10.
视频对象自动分类是智能视频监控的重要技术基础之一.为了提高分类精度,必须选择合适的对象特征.目前常用的视频对象分类方法都缺乏对于分类特征重要性的评价机制.提出一种视频对象分类特征评价与选择方法,该方法基于Adaboost算法的思想,通过对特征贡献进行定量评价实现特征选择.实验将视频对象区分为"单个行人"、"人群"、"车辆"和"骑车的人"四种类别,证明了该方法的合理性和有效性. 相似文献
11.
《Knowledge and Data Engineering, IEEE Transactions on》2009,21(2):192-205
Multiclass Mahalanobis-Taguchi system (MMTS), the extension of MTS, is developed for simultaneous multiclass classification and feature selection. In MMTS, the multiclass measurement scale is constructed by establishing an individual Mahalanobis space for each class. To increase the validity of the measurement scale, the Gram-Schmidt process is performed to mutually orthogonalize the features and eliminate the multicollinearity. The important features are identified using the orthogonal arrays and the signal-to-noise ratio, and are then used to construct a reduced model measurement scale. The contribution of each important feature to classification is also derived according to the effect gain to develop a weighted Mahalanobis distance which is finally used as the distance metric for the classification of MMTS. Using the reduced model measurement scale, an unknown example will be classified into the class with minimum weighted Mahalanobis distance considering only the important features. For evaluating the effectiveness of MMTS, a numerical experiment is implemented, and the results show that MMTS outperforms other well-known algorithms not only on classification accuracy but also on feature selection efficiency. Finally, a real case about gestational diabetes mellitus is studied, and the results indicate the practicality of MMTS in real-world applications. 相似文献
12.
中文Web文本的特征获取与分类 总被引:16,自引:0,他引:16
已有许多方法用于英文网页的特征抽取,相对而言适合于中文网页的方法还不多。该文设计了一个综合考虑位置,频率和词长3个因素的中文Web文本词权重的计算公式,提出了一种用变长度染色体遗传算法提取Web文本特征的方法。实验表明该方法在降低特征矢量数方面是有效的。 相似文献
13.
音频自动分类中的特征分析和抽取 总被引:8,自引:1,他引:8
音频特征分析和抽取是音频自动分类的基础,本文将音频对象分为静音,噪音,纯语音,带背景音语音,音乐等5类,从帧层次和段层次上深入分析了不同类音频之间的区别性特征,包括帧层次上的MFCC,频域能量,子带能量,过零率,频谱中心等特征,在此基础上计算了段层次上的基本音频特征,包括静音比率,子带能量比均值等,提出了3个音频”流”特征-High-ZCR比率,Low-Frequency-Energy比率,频谱流量.设计并实现了一种基于支持向量机(support vector machine)的自动分类器,考察了上述特征组成的特征集合在该分类器中的分类性能.实验表明,本文提出的特征有效,分类性能良好. 相似文献
14.
一种组合特征抽取的新方法 总被引:10,自引:0,他引:10
该文提出了一种基于特征级融合的特征抽取新方法,首先,给出了一种合理的特征融合策略,即利用复向量给出组合特征的表示,将特征空间从实向量空间拓广到复向量空间,然后,发展了具有统计不相关性的鉴别分析的理论,并将其用于复向量空间内最优鉴别特征的抽取,最后,在Concordia大学的CENPARMI手写体阿拉伯数字数据库以及南京理工大学NUST603HW手写汉字库上的试验结果表明,所提出的组合特征抽取方法不仅具有很强的维数压缩能力,而且较大幅度地提高了识别率。 相似文献
15.
脑机接口系统中EEG信号特征提取与分类 总被引:1,自引:0,他引:1
脑机接口(BCI)技术是近年来国际上的研究热点之一,它通常利用脑电(EEG)来实现无动作的人机交互,运动想象是其中一种重要BCI实验范式,利用第二届国际脑机接口竞赛中的一组实验数据为处理对象,将数据经公共空间模式滤波、小波时频分解、然后采用T加权提取最后特征,并利用支持向量机进行分类器设计.实验结果表明,该算法效果较好,最终识别正确率达到89.3%. 相似文献
16.
17.
首先针对空间信息网络集成中多数据模型集成的问题,分析了栅格、矢量和混合数据模型的特点,然后提出了一种按层次的矢量栅格一体化全要素模型。该模型将实现世界的所有对象均按层次以要素划分与描述,所有数据均以矢量方式进行组织,可以同时描述基于矢量、栅格、三维等模型的数据,克服了目前在空间信息网络集成应用中基于不同模型数据之间不能很好地集成、进行空间分析的缺点。最后构建并给出了点、线、面、体四种基本要素的具体数据结构,针对具体实例进行了分析与描述,并阐述了该模型的特点。 相似文献
18.
Combined SVM-Based Feature Selection and Classification 总被引:1,自引:0,他引:1
Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification.
This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In
particular, we include linear and nonlinear Support Vector Machine classifiers. The key ideas of our approaches are additional
regularisation and embedded nonlinear feature selection. To solve our optimisation problems, we apply difference of convex
functions programming which is a general framework for non-convex continuous optimisation. Experiments with artificial data
and with various real-world problems including organ classification in computed tomography scans demonstrate that our methods
accomplish the desired feature selection and classification performance simultaneously.
Editor: Dale Schuurmans 相似文献
19.
Machine Intelligence Research - In multi-dimensional classification (MDC), the semantics of objects are characterized by multiple class spaces from different dimensions. Most MDC approaches try to... 相似文献
20.
卷积神经网络(Convolutional Neural Networks,CNN)在图像分类任务中的卓越表现,使得其被广泛应用于计算机视觉的各个领域。图像分类模型精度与效率的提升,除了归功于网络结构的改变外,还有很大一部分原因来自于归一化技术以及分类损失函数的改进。在人脸识别任务中,随着精度的不断提升,分类损失函数从Softmax Loss到Triplet Loss,又从L-Softmax Loss到Arcface Loss,度量方式从几何度量发展到角度度量。度量方式的改变实际上是特征形式的变化,即特征形式从一般特征转变为角度特征。在Mnist数据集上,使用角度度量损失函数训练得到的特征点呈角度分布,同时准确率比几何度量高;将角度度量方式用更直接的角度特征来表示,训练得到的同类特征点呈直线分布,准确度也比一般角度度量更高。这不禁令人思考,在CNN分类模型中是否可以使用角度特征来代替一般特征。在CNN分类模型中,其主要架构往往由多个卷积层和一个或多个全连接层组成,通过统一卷积层与全连接层的归一化操作,得到角度卷积层与角度全连接层。在普通分类网络的基础上,用角度卷积层替换卷积层,用角度全连接层替换全连接层,可以得到一个由角度特征组成的角度分类网络。在Cifar-100数据集上,基于ResNet-32构造的角度分类网络相比原分类网络,分类准确率提高了2%,从而论证了角度特征在分类网络中的有效性。 相似文献