共查询到19条相似文献,搜索用时 68 毫秒
1.
2.
3.
关联规则是数据挖掘的重要研究内容之一。针对数据库数据增加的同时最小支持度发生改变的关联规则更新维护问题,提出了一种基于矩阵的增量式关联规则挖掘算法IUBM。该算法采用简单的数组和位运算,在执行关联规则的更新时,既不用多次扫描数据库,也不产生庞大的候选项集。实例表明,该算法的时间复杂度和空间复杂度大大降低。 相似文献
4.
5.
曹慧 《计算机工程与科学》2004,26(11):69-70
采用向量矩阵进行关联规则挖掘,较之一般的挖掘算法在发现频繁项目集方面有更高的效率。本文提出的算法只需要对数据库扫描一遍,并且存放辅助信息所需要的空间也少,因此具有很好的实用性。 相似文献
6.
频繁项集挖掘是关联规则挖掘的核心部分,目前大多数关于关联规则挖掘的研究都集中于如何提高频繁项集挖掘的效率,然而在实际应用中,决策者面对的是最终从频繁项集中生成的规则集,因此优化规则的生成过程及生成规则同样值得重视。本文提出频繁项集的子集树这一模式来生成关联规则,不仅简化规则的生成过程还可缩小决策者面对的规则集,更便于规则的增量更新。 相似文献
7.
裴古英 《自动化与仪器仪表》2009,(5):16-18
关联规则的发现是数据挖掘中的一个重要问题,其核心是频繁模式的挖掘,通常采用的APriori算法要多次扫描数据库并产生大量的候选项集,开销很大。本文采用基于布尔矩阵关联挖掘的算法,只需扫描一次数据库而且不需要链接产生候选项集,从而提高算法的效率。并通过实例说明了它是一种有效的关联规则挖掘方法。 相似文献
8.
9.
10.
为了有效提高关联规则挖掘算法处理数据库的效率,在研究基于矩阵的关联规则挖掘算法的基础上,提出了改进的关联规则挖掘算法DMApriori,并选取程序模拟超市购物产生的4个试验数据集,应用DMapriori算法对该数据集进行了关联规则挖掘;实验结果表明,该算法能平均提高关联规则挖掘时间20%;在计算数据库中的频繁项集时,通过有效裁剪布尔矩阵,使算法逐层扫描的数据量大大减少,并且对每个项集计数时,只扫描部分数据,提高了关联规则挖掘算法的性能。 相似文献
11.
传统的并行关联规则算法对每一次迭代都定义一个MapReduce任务,以实现候选项集的生成和计数功能,但多次启动MapReduce任务会带来极大的性能开销。文中定义了一种并行关联规则挖掘算法PST-Apriori,该算法采取分治策略,在每个分布式计算节点定义一个前缀共享树,通过递归调用的方式将事务T生成的候选项集逐层压缩到前缀共享树(PST)中。然后广度遍历PST,逐层将每个节点对应的〈key,value〉作为map函数的输入,并由Map-Reduce框架自动按照key值进行聚集。最后调用reduce函数对多个任务的处理结果进行汇总,得到满足最小支持度阈值的频繁项集。算法只使用两个MapReduce任务,且PST按照key值排序便于Mapper端的shuffle操作,提高了运行效率。 相似文献
12.
一种基于遗传算法的关联规则挖掘方法 总被引:3,自引:0,他引:3
彭建 《计算技术与自动化》2005,24(2):75-77
根据关联规则挖掘的要求与特点,结合遗传算法的思想,提出了一个基于遗传算法的关联规则挖掘方法,并通过实例分析,说明是一种具有实用价值的方法。 相似文献
13.
关联规则挖掘算法Apriori算法在挖掘频繁模式时需要产生大量的候选项集,多次扫描数据库,时空复杂度过高.针对该算法的局限性,提出了一种通过对项编码来减少扫描数据库次数并通过删除项来减少候选项集的数量,从而提高算法的效率.相同条件下的实验结果表明,优化后的算法能有效地提高关联规则挖掘的效率. 相似文献
14.
一种利用关联规则挖掘的多标记分类算法 总被引:2,自引:0,他引:2
多标记学习广泛存在于现实生活中,是当今机器学习领域的研究热点.在多标记学习框架中,每个对象由一个示例构成,但可能同时属于多个类别标记,并且各个标记之间相互关联,所以挖掘多标记之间的关联性对于多标记学习框架具有重要的意义.首先对经典的关联规则算法进行改进,提出了基于矩阵分治的频繁项集挖掘算法,并证明了该算法挖掘频繁项集的正确性;进而将该算法应用于多标记学习框架中,分别提出了基于全局关联规则挖掘和局部关联规则挖掘的多标记分类算法;最后对所提出的算法与现有多标记算法进行实验对比,结果表明,算法在5种不同的评价准则下能够取得更好的效果. 相似文献
15.
基于等价关系的关联规则挖掘算法研究 总被引:3,自引:0,他引:3
王燕 《计算机工程与应用》2006,42(8):187-189
文章在现有关联规则挖掘算法的基础上,基于等价关系和等价类来生成侯选频繁项目集,它可以减少系统的开销;并利用参照数据集代替原始交易数据库进行侯选频繁项目集中支持度计数的测试,以此来减少对原始交易数据库的扫描次数。这种方法对于挖掘关联规则是有效的。 相似文献
16.
17.
18.
针对在数据挖掘应用中关联规则挖掘的问题,给出一种基于混合遗传克隆算法的关联规则挖掘方法,该算法将遗传算法和克隆算法优点相结合,通过克隆操作来产生一组新的个体,独立地对所产生的各个体进行变异,交叉操作,同时采用自适应方式动态选取交叉和变异概率,有效地克服了遗传算法容易陷入局部最优的缺点,从而求得问题的最优解。实验结果表明,该方法能高效地解决关联规则挖掘问题。 相似文献