首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Destruction of discarded military munitions in an explosion chamber produces two fractions of hazardous solid waste. The first one is scrap waste that remains in the chamber after explosion; the second one is fine dust waste, which is trapped on filters of gas products that are exhausted from the chamber after explosion. The technique of stabilization/solidification of the scrap waste by asphalt emulsion is described in this paper. The technique consists of simple mixing of the waste with anionic asphalt emulsion, or two-step mixing of the waste with cationic asphalt emulsion. These techniques are easy to use and the stabilized scrap waste proves low leachability of contained heavy metals assessed by TCLP test. Hence, it is possible to landfill the scrap waste stabilized by asphalt emulsion. If the dust waste, which has large specific surface, is stabilized by asphalt emulsion, it is not fully encapsulated; the results of the leaching tests do not meet the regulatory levels. However, the dust waste solidified by asphalt emulsion can be deposited into an asphalted disposal site of the landfill. The asphalt walls of the disposal site represent an efficient secondary barrier against pollutant release.  相似文献   

2.
In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3).  相似文献   

3.
聚合物乳液是一种性能优良的环境友好型材料,具有无毒、不易燃烧、不污染环境等优点,已被广泛的应用于涂料、胶粘剂、皮革、纺织等工业生产中.聚合物乳液的固化速率一直制约其应用,笔者介绍了聚合物乳液在应用中的固化方法与原理,深入分析了目前各种固化方法与性能之间的关系,指出了各种固化方法中存在的问题,并对聚合物乳液固化的发展进行...  相似文献   

4.
This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.  相似文献   

5.
Solidification/stabilization (S/S) process can improve the physical characteristics of wastes, reduce their leaching and limit the solubility of their heavy metals. The identification of binders able to assume the fixation of contaminants is essential for the success of the technique. In this study, calcium sulfoaluminate cement was added to another waste, bottom ash, in order to treat galvanic sludge. The properties of the resultant solid matrix (MS) were determined: setting time, compressive strength and products of hydration. Solid matrix composed of 77% waste and only 23% cement presented initial setting time lower than 4 h and 28 day-strength of 6 MPa. SEM investigations showed that contaminants present in the galvanic sludge (Cr) were encapsulated in the hydrated phases and particles of bottom ash.  相似文献   

6.
The incorporation of several industrial wastes in ceramic matrixes had been attempted as an effective low expense technique for the fixation of metallic species in usable products or simply to reduce the residue volume for further disposal. However, the dominant mechanism of the inertization process and the relevant influent parameters are still unknown, mostly due to the complexity of the systems. This work reports the effect of several processing parameters such as the mixing time, the calcination temperature and duration, the relative amount of sludge, and the physical aspect of the sample (powdered or pressed pellets) on the fixing level of relevant species (SiO2), SO4(2)-, Zn, Ni, Ca, Cu, Cr) by leaching in different media (aqueous, acetate, and citrate). Statistical tools were used to define the relevance of each experimental variable on the inertization process of the used galvanic sludge. The relative amount of sludge in the mixture, the calcination temperature and the agglomeration state of the sample were found to be the most influent parameters of the inertization process. The incipient reaction between sludge and ceramic matrix components points out for the dominance of a macro-encapsulation mechanism.  相似文献   

7.
This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.  相似文献   

8.
The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished.  相似文献   

9.
Hydroxide-metal sludges from electroplating industry are a potential source of environmental contamination due to their high content of heavy metals. The incorporation of these residues in a ceramic matrix can be a promising way to suppress the harmful effect of metals normally present in those sludges. This work reports the role of the mixing time between the waste and ceramic materials and of the calcination step on the fixing level of several metal-containing species (Al, Zn, Ni, Fe, Ca, Cu, Cr) after sequential leaching in different media (aqueous, acetate and citrate). A strong and/or long mixing process will promote the deagglomeration of the coarser agglomerates and then will increase the reactivity of remaining grains towards the ceramic material during the calcination. As a consequence, inertization is improved for fired samples. With non-calcined samples leaching increases as a result of increasing dispersability/availability of species.  相似文献   

10.
Stabilization/solidification (S/S) of mercury-containing solid wastes using activated carbon and cement was investigated in this study. The activated carbon used in the study was a powder reactivated carbon (PAC). The effect of sulfur-treatment of the PAC was also studied. It was found that PAC was effective in stabilizing Hg in the waste surrogate. Pretreatment of the PAC by soaking it in CS(2) significantly improved the mercury adsorption capacity of the PAC. The adsorption equilibrium was reached within 24h. The optimum pH for the reaction was within the range of 5.0-5.5. After mercury stabilization by adsorption on the reactivated carbon, the Hg waste surrogate was mixed with Portland cement for solidification. Surrogates with up to 1000 mg/kg Hg were stabilized and solidified well enough to pass the TCLP test. The adsorption of mercury by reactivated carbon was in accordance with the Freundlich isotherm. Cement solidification of reactivated carbon-stabilized surrogates, significantly reduced the often-reported interference by chloride ions, by forming a barrier outside of the carbon particles. The S/S process using reactivated carbon and cement is an effective and economical technology for treating and disposing mercury-containing solid wastes.  相似文献   

11.
A simple galvanic deposition technique has been developed to demonstrate the deposition of cuprous oxide (Cu2O) on transparent conducting oxide substrate for the first time. The result shows that the morphologies of galvanically obtained Cu2O crystals are mainly dependent on the nature of anions in aqueous solution. The presence of NO3 ions tends to increase the stability of (111) planes of Cu2O cubes and makes the crystals develop a fraction of (111) planes at the corners of the Cu2O cubes, thus resulting in the formation of truncated octahedral Cu2O crystals.  相似文献   

12.
Viscosity determination of thixotropic emulsions with good repeatability has always been a major challenge. Currently, Saybolt Furol viscometer (SFV) is used to determine the viscosity of the emulsion, but the main drawback of the SFV is that it cannot simulate the behaviour of emulsion under different shear rate. Rotational viscometer (RV) can measure viscosity at different shear rates. Due to the thixotropic behaviour of the emulsions, getting repeatable results by following the hot binder specification is a problematic task. In this study, a new multiple shear step approach is used to determine the viscosity of the emulsified asphalt using RV. Three low viscous (SS-1, SS-1H and SS-1L) and two high viscous (CRS-2 and CRS-2P) emulsions were used in this study. Shear stress is gradually stepped up to different levels after certain time interval to determine the viscosity. In this manner, emulsion undergoes a known shear state and each reading is preceded by a certain repeatable shear history. It was observed that with the progression of time and simultaneous increase in shear rate, the viscosity results are much more stable and repeatable with less than 5% coefficient of variance. The final specifications proposed are 220–730 and 5–90 cP at 50 rpm and 30 °C for high and low viscous emulsions, respectively, which are based on 98% probability. Viscosity measured by this approach also showed strong correlation with water content (R2 > 0.94). The correlation between viscosity and water content is even stronger after dilution. With different dilution water content, viscosity of CRS-2 and CRS-2P exhibited R2 values of 0.97 and 0.98, respectively.  相似文献   

13.
Abstract

Studies were conducted to investigate the feasibility and effectiveness of solidification/stabilization of hazardous heavy metal‐laden sludges with portland cement. The results indicated that the sludge properties had a significant effect on the compressive strength of the solidified samples. Additives such as lime, sodium silicate, calcium chloride, and fly ash could enhance the compressive strength and reduce the leachability of heavy metal. Also, leaching studies indicated that stabilization minimized or prevented the release of heavy metals and created a nonhazardous product.  相似文献   

14.
A straightforward method has been developed to generate silica nanocapsules containing Ag/Au alloy nanoparticles (Ag/Au@silica) by in-situ galvanic replacement reaction between the silica-coated silver (Ag@silica) nanoparticles with aqueous chloroauric acid (HAuCl4). Ag/Au@silica exhibits an optical absorbance derived from the surface Plasmon resonance of the encapsulated Ag/Au alloy nanoparticle. The behaviour of chemical diffusion across the silica shells of Ag/Au@silica is also investigated. It is worthy to noting that this facile synthetic strategy could be amenable to the other systems that involve the use of different combination of materials for the core (Pd/Ag, Pt/Ag alloy nanoparticles) and for the shell (titania).  相似文献   

15.
16.
Novel carbon nanotube microcapsules were prepared by oil in water (O/W) Pickering emulsions without any surfactant used. The oxygen plasma treatment introduced several hydrophilic groups on carbon nanotubes resulting in the improved aqueous dispersion. The plasma-treated carbon nanotubes were self assembled at the interface between water and oil phases. Contact angle measurement and XPS analysis proved the hydrophilic formed on carbon nanotubes. The content of carbon nanotubes played an important role in determining both the morphology and size of microcapsules.  相似文献   

17.
Directional solidification of alloys, which allows the independent control of growth parameters (pulling velocity, temperature gradient), is an experimental method of choice for the investigation of many fundamental problems (e.g. microstructure formation and selection, segregation of chemical species) encountered in the processing of structural materials. Upward directional solidification is carried out on hypoeutectic Al-Ni alloys, under natural and controlled fluid-flow conditions. First, the influence of natural convection on solidified dendritic microstructure is analyzed as a function of growth parameters. Then, directional solidification experiments with axial vibration are performed. It results that crucible vibration can be used to either damp or control fluid flow in the melt, and thus tailor columnar or “equiaxed” dendritic mush. Advanced modeling and numerical simulation are essential to clarify and quantify the various physical effects. Microgravity benchmark experiments under diffusion transport, and possibly with crucible rotation, are foreseen using the Materials Science Laboratory of ESA on ISS.  相似文献   

18.
In hazardous waste management, solidification/stabilization (S/S) is a term normally used to designate a technology employing additives to alter hazardous waste to make it non-hazardous or acceptable for current land disposal requirements. The use of this technology to treat hazardous waste may become more important as regulations restrict the use of land for disposing of hazardous waste. This paper reviews the technology and provides information to help assess its potential role in managing hazardous waste. Information is provided to assist the proper selection, use and evaluation of S/S technologies. Regulatory factors affecting its use are also discussed.  相似文献   

19.
This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature.  相似文献   

20.
We present here a facile one-step method for the synthesis of silica/Au core-shell nanostructures by exploiting the potential difference of AuCl4? and Ag in aqueous as well as alkaline media. Initially, silica/Ag core-shell nanostructures were synthesised by coating Ag nanoparticles on silica core (size ~150 nm) in a two-step process (seeding and growth) and were characterised for their morphological, structural and optical behaviours. A complete coverage of silica core with Ag nanoparticles was seen from scanning electron microscope and transmission electron microscope images. The presence of resonance peaks in the optical spectrum manifests the nature of the shell (thin shell ~413 and 650 nm, thick shell ~434 nm). Galvanic replacement of silica/Ag core-shell nanostructures in chloroauric acid solution (HAuCl4) was studied in both the aqueous and alkaline medium, where an aqueous environment results into fast and effective replacement as compared to an alkaline medium, which has been confirmed from optical absorption studies. The optical studies showed that in an alkaline environment, on galvanic replacement of Ag with Au, the individual absorption peak of Ag (~414 nm) and Au (~520 nm) disappeared, whereas new absorption wavelengths in higher region (600–800 nm) of electromagnetic spectrum were observed. A detailed mechanism is proposed for the same to explain this behaviour. A range of novel new plasmonic core-shell nanomaterials can be synthesised as an intermediate of this facile one-step reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号