首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The piezoelectric photoacoustic (PPA) signals for Cu-rich CuGaSe2 (CGS) /GaAs (0 0 1) epitaxial layer (Cu/Ga=1.09–2.16) grown by molecular beam epitaxy (MBE) were successfully obtained at liquid-nitrogen temperature. The bandgap energies of CGS (A-band) decreased and GaAs was not almost changed with increasing the Cu/Ga ratios. This phenomenon was very similar to that of free exciton (FE) by photoluminescence (PL) and the lattice parameter c by X-ray diffraction (XRD) measurements.  相似文献   

2.
A buffer layer structure on Ge substrate was studied for MOCVD growth of a high-quality GaAs layer. The buffer layer structure was designed taking into consideration both lattice constants and thermal expansion coefficients of GaAs and Ge. It consisted of a preliminarily grown thin layer of AlxGa1−xAs and a GaAs layer. Photoluminescence (PL) decay of a GaAs layer in an Alo0.2Ga0.8As-GaAs-Al0.2Ga0.8As double-hetero (DH) structure, which was grown on the buffer layer structure, was observed by time-resolved PL method to estimate the quality of epilayers in the DH structure. The PL decay time strongly depended on Al content (x) of the AlxGa1−x As preliminary layer, and the highest value was obtained when the x was 0.25. A PL decay time above 20 ns was successfully obtained for the DH structure grown on the buffer layer structure, which consisted of a 0.05 μm thick Al0.25Ga0.75As layer and a 1 μm thick GaAs layer. Although this value was half of that for the DH structure grown on GaAs substrate, it was much longer than the value of 3 ns for the DH structure grown on Ge substrate with a conventional GaAs buffer layer 1 μm thick.  相似文献   

3.
Photoluminescence (PL) have been studied on Cu(In,Ga)Se2 (CIGS) thin films, CdS/CIGS and CIGS solar cells, to clarify the carrier recombination process. The chemical-bath deposition (CBD) of the CdS buffer layer on the CIGS thin film leads to (i) the enhancement of near-band-edge PL intensity by a factor of 2–3, (ii) change in energy of the defect-related PL and (iii) the slight change in the decay time. They are related not only to the minimization of the surface recombination but also to the modification of native defects at the Cu-poor surface of CIGS by the occupation of Cd atom at the Cu site. A donor–acceptor pair PL at low-temperature and temperature-dependent PL have been studied. They are discussed in terms of the impurity and defect levels created in the CIGS film during the CBD-CdS process.  相似文献   

4.
The hydrogen plasma passivation effects of MOCVD-grown GaAs solar cell on Si substrate have been studied in detail. To get a more reproducible increase of conversion efficiency and test the thermal stability of the plasma-exposed GaAs/Si solar cell, both the plasma exposure and post-passivation annealing conditions were optimized. Annealing the H2 plasma passivated GaAs/Si solar cell at 450°C in AsH3/H2 ambient seems a very essential parameter to restore the carrier concentration, especially, without losing the beneficial effects of H incorporation into GaAs on Si. For the H2 plasma passivated GaAs/Si solar cell, a highest conversion efficiency of 18.3% was obtained compared with that of the as-grown cell (16.6%) due to the H passivation effects on nonradiative recombination centers, which increased the minority carrier lifetime.  相似文献   

5.
A way of evaluate the minority-carrier lifetime by using photoluminescence (PL) measurement is proposed which includes self-absorption. The room-temperature PL intensity is analyzed theoretically for bulk crystals and a device with n+-p junction configuration, based on a one-dimensional model. Photoluminescence analysis of In0.5Ga0.5P solar cells grown on GaAs and Si substrates by MOCVD (metal organic vapor deposition) have been carried out and compared with the properties of the In0.5Ga0.5P solar cells. By improving minority-carrier lifetime, high-efficiency In0.5Ga0.5P cells on GaAs substrates with an efficiency of 18.5% have been made.  相似文献   

6.
This paper reviews the present status of radiation-resistant solar cells made with Si, GaAs, InP and InGaP/GaAs for space use. At first, properties of radiation-induced defects in semiconductor materials and solar cells are described based on an anomalous degradation of Si space solar cells under high-energy, high-fluence electron and proton irradiations. Advantages of direct bandgap materials as radiation-resistant space cells are presented. Unique properties of InP as radiation-resistant cells have also been found. A world-record efficiency of 26.9% (AM0) has been obtained for an InGaP/GaAs tandem solar cell. Radiation-resistance of the InGaP/GaAs tandem cells is described.  相似文献   

7.
Our recent R&D activities of III–V compound multi-junction (MJ) solar cells are presented. Conversion efficiency of InGaP/InGaAs/Ge has been improved up to 31–32% (AM1.5) as a result of technologies development such as double hetero-wide band-gap tunnel junction, InGaP–Ge hetero-face structure bottom cell, and precise lattice-matching of InGaAs middle cell to Ge substrate by adding indium into the conventional GaAs layer. For concentrator applications, grid structure has been designed in order to reduce the energy loss due to series resistance, and world-record efficiency InGaP/InGaAs/Ge 3-junction concentrator solar cell with an efficiency of 37.4% (AM1.5G, 200-suns) has been fabricated. In addition, we have also demonstrated high-efficiency and large-area (7000 cm2) concentrator InGaP/InGaAs/Ge 3-junction solar cell modules of an outdoor efficiency of 27% as a result of developing high-efficiency InGaP/InGaAs/Ge 3-junction cells, low optical loss Fresnel lens and homogenizers, and designing high thermal conductivity modules.Future prospects are also presented. We have proposed concentrator III–V compound MJ solar cells as the 3rd generation solar cells in addition to 1st generation crystalline Si solar cells and 2nd generation thin-film solar cells. We are now developing low-cost and high output power concentrator MJ solar cell modules with an output power of 400 W/m2 for terrestrial applications.  相似文献   

8.
We present and characterize the first epitaxial Si/CuInS2 heterojunction devices. By means of molecular beam epitaxy (MBE), slightly copper-rich CuInS2 epilayers are deposited on sulphur-terminated Si-(1 1 1) surfaces of n-type wafers. Both the quality of the substrate and the deposited epilayer are controlled in situ using low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) and various other methods including transmission electron microscopy (TEM) are applied in the ex situ structural characterization. The heterojunction diodes are completed by the deposition of an indium-tin oxide (ITO) layer and of metallic contacts. Their electronic and structural properties are discussed.  相似文献   

9.
CuGaSe2–GaAs heterojunctions were fabricated by fast evaporation of polycrystalline CuGaSe2 from a single source on n-type GaAs substrates. The best CuGaSe2–GaAs photocell (without an antireflective coating) exhibited an efficiency of 11.5%, Jsc=32 mA/cm2, Voc=610 mV and FF=0.60. The spectral distribution of photosensitivity of CuGaSe2–GaAs junctions extends from 400 to 900 nm. The CuGaSe2 films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD analysis indicated that the thin films were strongly oriented along the (1 1 2) plane. SEM studies of CuGaSe2 films showed nearly stoichiometric composition with grain size about 1–2 μm. The energy dispersive X-ray spectroscopy (EDX) analysis of Cu concentration distribution in n-type GaAs showed that Cu diffused from the film into n-type GaAs during the growth process resulting in formation of the latent p–n homojunction in substrate. The diffusion coefficient of Cu in GaAs at growth temperature (520°C) estimated from EDX measurements was 6×10−8 cm2/s.  相似文献   

10.
An analysis of the radiation response of state-of-the-art InP/Si, InGaP, and dual junction (DJ) InGaP/GaAs space solar cells under both electron and proton irradiated is presented. The degradation data are modeled using the theory of displacement damage dose. For each technology, a characteristic curve which describes the cell degradation in any radiation environment is determined, and the characteristic curves are used to compare the radiation resistance of the different technologies on an absolute scale. The radiation data are used as input to a code which predicts the end-of-life (EOL) performance of a solar panel in earth orbit. The results show that in orbits outside the earth's radiation belts, the high-efficiency DJ InGaP/GaAs solar panels provide the highest EOL specific power. However, in orbits which pass through the belts, the radiation hard InP/Si panels provide the highest specific power by as much as 30%.  相似文献   

11.
A comparative study of Schottky diode hydrogen gas sensors based on Pd/WO3/Si and Pd/WO3/ZnO/Si structure is presented in this work. Atomic force microscopy and X-ray photoelectron spectroscopy reveal that the WO3 sensing layer grown on ZnO has a rougher surface and better stoichiometric composition than the one grown on the Si substrate. Analysis of the IV characteristics and dynamic response of the two sensors when exposed to different hydrogen concentrations and various temperatures indicate that with the addition of the ZnO layer, the diode can exhibit a larger voltage shift of 4.0 V, 10 times higher sensitivity, and shorter response and recovery times (105 s and 25 s, respectively) towards 10,000-ppm H2/air at 423 K. Study on the energy band diagram of the diode suggests that the barrier height is modulated by the WO3/ZnO heterojunction, which could be verified by the symmetrical sensing properties of the Pd/WO3/ZnO/Si gas sensor with respect to applied voltage.  相似文献   

12.
Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells with a world-record efficiency of 26.9% (AM0, 28°C) has been evaluated by 1 MeV electron irradiation. Degradation in tandem cell performance has been confirmed to be mainly attributed to large degradation in the GaAs bottom cell. Similar radiation resistance with GaAs-on-Ge cells has been observed for the InGaP/GaAs tandem cell. Moreover, recovery of the tandem cell performance has been found due to minority-carrier injection under light illumination or forward bias, which causes defect annealing in InGaP top cells. The optimal design of the InGaP base layer thickness for current matching at end of life (EOL) (after irradiation with 1015 electrons cm−2) has been examined.  相似文献   

13.
A novel composite membrane consisting of a poly(phenylene oxide) (PPO) selective layer and a CMS/Al2O3 substrate was fabricated by a spin-coating method. This new class of PPO/CMS/Al2O3 multilayer composite membranes showed an H2 permeability of 134 Barrer, two times greater than that for the corresponding self-supported PPO polymeric membrane. High selectivities for H2/CH4 and H2/N2 of 31.8 and 37.1, respectively, were also obtained with this composite membrane. According to field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations, using the CMS/Al2O3 material as the substrate provided a smooth surface for the support of the PPO selective layer and increased the roughness from the top to bottom surfaces. The effects of the substrate materials on the permselectivity of the resulting membrane were also investigated.  相似文献   

14.
Characteristics of GaAs solar cell on Ge substrate with a new buffer layer structure is reported. The buffer layer structure, which consisted of a preliminarily grown thin layer of A1xGa1−xAs and a 1 μm thick GaAs layer, was designed to obtain a high quality GaAs layer on Ge substrate by metalorganic chemical vapor deposition (MOCVD). Performance of a GaAs solar cell fabricated on Ge substrate with the buffer layer structure was compared with that fabricated on Ge substrate with a conventional GaAs buffer layer and also that fabricated on GaAs substrate. A conversion efficiency of 23.18% (AM1.5G) was successfully obtained for the cell fabricated on Ge substrate with the new buffer layer structure, while it was 20.92% for the cell fabricated on Ge substrate with the conventional GaAs buffer layer. Values of Voc and Jsc, for the cell fabricated on Ge substrate with the new buffer layer structure were approximately comparable to those of a 25.39% efficiency GaAs solar cell fabricated on GaAs substrate.  相似文献   

15.
In this work, we studied the mechanical and thermal stability of ~100 nm Pd thin films magnetron sputter deposited on a bare oxidized Si(100) wafer, a sputtered Titanium (Ti) intermediate layer, and a spin-coated Polyimide (PI) intermediate layer. The dependence of the film stability on the film morphology and the film-substrate interaction was investigated. It was shown that a columnar morphology with elongated voids at part of the grain boundaries is resistant to embrittlement induced by the hydride formation (α?β phase transitions). For compact film morphology, depending on the rigidity of the intermediate layer and the adherence to the substrate, complete transformation (Pd-PI-SiO2/Si) or partly suppression (Pd-Ti-SiO2/Si) of the α to β-phase was observed. In the case of Pd without intermediate layer (Pd-SiO2/Si), buckling delamination occurred. The damage and deformation mechanisms could be understood by the analysis of the stresses and dislocation (defects) behavior near grain boundaries and the film-substrate interface. From diffraction line-broadening combined with microscopy analysis, we showed that in Pd thin films, stresses relax at critical stress values via different relaxation pathways depending on film-microstructure and film-substrate interaction. On the basis of the in-situ hydriding experiments, it was concluded that a Pd film on a flexible PI intermediate layer exhibits free-standing film-like behavior besides being strongly clamped on a stiff SiO2/Si substrate.  相似文献   

16.
Enhancement of the optical confinement effect by an intermediate layer (IML) between Si and alumina substrate in thin film Si solar cells was studied. The dependence of the optical confinement effect on refractive index of the IML and on thickness of Si was separately investigated by hemispherical reflectance measurement of the following two series of samples. In the first case, SiOxNy, SiNx or TiO2 was deposited as the IML in the multilayer, Si/IML/alumina. In the second case, Si layers with different thicknesses were formed. The study showed that in certain conditions the IML could enhance the optical absorption of Si layer in thin film Si solar cells.  相似文献   

17.
Solid oxide fuel cells typically operate at temperatures of about 1000 °C. At these temperatures only ceramic interconnects such as LaCrO3 can be employed. The development of intermediate-temperature solid oxide fuel cells (IT-SOFCs) can potentially bring about reduced manufacturing costs as it makes possible the use of an inexpensive ferritic stainless steel (STS) interconnector. However, the STS suffers from Cr2O3 scale formation and a peeling-off phenomenon at the IT-SOFC operating temperature in an oxidizing atmosphere. Application of an oxidation protective coating is an effective means of providing oxidation resistance. In this study, we coated an oxidation protective layer on ferritic stainless steel using a precursor solution prepared from lanthanum nitrate, ethylene glycol, and nitric acid. Heating the precursor solution at 80 °C yielded a spinable solution for coating. A gel film was coated on a STS substrate by a dip coating technique. At the early stage of the heat-treatment, lanthanum-containing oxides such as La2O3 and La2CrO6 formed, and as the heat-treatment temperature was increased, an oxidation protective perovskite-type LaCrO3 layer was produced by the reaction between the lanthanum-containing oxide and the Cr2O3 scale on the SUS substrate. As the concentration of La-containing precursor solution was increased, the amount of La2O3 and La2CrO6 phases was gradually increased. The coating layer, which was prepared from a precursor solution of 0.8 M, was composed of LaCrO3 and small amounts of (Mn,Cr)O4 spinel. A relatively dense coating layer without pin-holes was obtained by heating the gel coating layer at 1073 K for 2 h. Microstructures and oxidation behavior of the La2O3-coated STS444 were investigated.  相似文献   

18.
A series of self-organized InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy to investigate the dependence of transition energy on GaAs spacer layer thickness. The latter was varied of 60, 45, 30, 15, and 10 monolayers (MLs) for the five different samples. The photoluminescence (PL) measurements were carried out. The electronic states in coupled self-assembled InAs/GaAs QDs are investigated through PL properties with the aid of the theoretical calculation. First the energy levels of electrons and holes are calculated by solving the three-dimensional Schrödinger equation by considering the vertical coupling effect between a finite numbers of QDs. Based on the results the energies transitions between electrons and holes levels are calculated. Modification of PL spectra by increasing number of layers was found and attributed to an increasing vertical coupling. The PL full-width at half-maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 MLs. Moreover, the observed behavior PL lines is analyzed theoretically.  相似文献   

19.
Novel materials for high-efficiency III–V multi-junction solar cells   总被引:1,自引:0,他引:1  
As a result of developing wide bandgap InGaP double hetero structure tunnel junction for sub-cell interconnection, InGaAs middle cell lattice-matched to Ge substrate, and InGaP-Ge heteroface structure bottom cell, we have demonstrated 38.9% efficiency at 489-suns AM1.5 with InGaP/InGaP/Ge 3-junction solar cells by in-house measurements. In addition, as a result of developing a non-imaging Fresnel lens as primary optics, a glass-rod kaleidoscope homogenizer as secondary optics and heat conductive concentrator solar cell modules, we have demonstrated 28.9% efficiency with 550-suns concentrator cell modules with an area of 5445 cm2. In order to realize 40% and 50% efficiency, new approaches for novel materials and structures are being studied. We have obtained the following results: (1) improvements of lattice-mismatched InGaP/InGaAs/Ge 3-junction solar cell property as a result of dislocation density reduction by using thermal cycle annealing, (2) high quality (In)GaAsN material for 4- and 5-junction applications by chemical beam epitaxy, (3) 11.27% efficiency InGaAsN single-junction cells, (4) 18.27% efficiency InGaAs/GaAs potentially modulated quantum well cells, and (5) 7.65% efficiency InAs quantum dot cells.  相似文献   

20.
The development of a low-cost substrate is one of the major technological challenges for crystalline Si thin-film solar cells. Zirconium silicate (ZrSiO4) ceramics is a material which can meet the demanding physical requirements as well as the cost goals. Thin microcrystalline Si films were deposited by atmospheric pressure CVD on ZrSiO4-based ceramic substrates coated with barrier layers. The Si film was transferred into a multicrystalline grain structure by zone-melting recrystallization (ZMR). Film growth was analyzed in situ and correlated with substrate and barrier layer properties. Thin-film solar cells were fabricated from selected coarse-grained films. The best solar cell achieved an efficiency of 8.3% with a short circuit current density of 26.7 mA/cm2. The effective diffusion length obtained from internal quantum efficiency measurements was about 25 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号