首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an improved maximum power point tracking (MPPT) approach being low parameter dependency, simple structure and limited search interval has been presented for distributed MPPT photovoltaic (PV) systems. Basically, this approach is based on scanning of power–voltage (P-V) characteristic curve of PV modules in a limited duty ratio interval which makes tracking operation simple, fast and efficiently available in both uniform irradiance and partial shading conditions (PSCs). By limiting the scanning interval of maximum and minimum values of duty ratio via some analyses related to P-V characteristic for PSCs, global MPPT (GMPPT) is achieved in an efficient way. So as to validate performance of the proposed approach, a single-ended primary inductance converter has been used in both simulation and experimental studies. PV simulator has been used as a PV source to obtain different module characteristics with different number of bypass diodes and PV power levels. Both simulation and experimental results clarify that improved MPPT approach realises GMPPT effectively. Due to the high performance results, this approach can be an alternative technique in module-integrated converters, smart modules and PV power optimisers in which single module is used.  相似文献   

2.
To increase the efficiency of photovoltaic (PV) systems, maximum power point (MPP) tracking of the solar arrays is needed. Solar arrays output power depends on the solar irradiance and temperature. Also the mismatch phenomenon caused by partial shade will affect the output power of solar systems and lead to the incorrect operation of conventional MPP tracker. Under partially shaded conditions, the solar array power–current characteristic has multiple maximum. This paper presents a maximum power point tracking (MPPT) with particle swarm optimization method for PV systems under partially shaded condition. The performance of the proposed method is compared with perturb and observe (P&O), improved P&O, voltage‐based maximum power point tracking and current‐based maximum power point tracking algorithms, especially, under partially shaded condition. Simulation results confirm that proposed MPPT algorithm with high accuracy can track the peak power point under different insolation, temperature and partially shaded conditions, and it has the best performance in comparison with four mentioned MPPT algorithms. Also under rapidly changing atmospheric conditions, the P&O algorithm is diverged. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In testing maximum power point tracking (MPPT) algorithms running on electronic power converters for photovoltaic (PV) applications, either a PV energy source (PV module or PV array) or a PV emulator is required. With a PV emulator, it is possible to control the testing conditions with accuracy so that it is the preferred option. The PV source is modeled as a current source; thus, the emulator has to work as a current source dependent on its output voltage. The proposed emulator is a buck converter with an average current mode control loop, which allows testing the static and dynamic performance of PV facilities up to 3 kW. To validate the concept, the emulator is used to evaluate the MPPT algorithm of a 230‐W experimental microinverter working from a single PV module. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
When the photovoltaic(PV) system is generating PV power, the partial shading(PS) condition will cause multiple peaks in the power-voltage curve, and changes in light intensity and ambient temperature will cause the curve to shift. Traditional maximum power point tracking(MPPT) methods, such as the incremental conductance(INC) method, have the problem of being trapped in the local optimal solution. Biomimetic optimization algorithms, such as particle swarm optimization(PSO), have problems with os...  相似文献   

5.
In this paper, a grid-connected photovoltaic (PV) multistring power conditioning system with PV input current reduction control is proposed. An improved maximum power point tracking (MPPT) method for the multistring converter is suggested. The suggested MPPT algorithm tracks the maximum power point even though measurement errors exist. To reduce the PV current variation introduced by the inverter, a PV current variation reduction control is suggested. This PV current variation reduction control reduces the PV current variation without additional components. The low current variation reduces the filter size and improves the MPPT efficiency. All algorithms and controllers are implemented on a single-chip microcontroller. Experimental results obtained on a 3-kW prototype show high performance such as a MPPT efficiency of 99.7%, an almost unity power factor, a power efficiency of 96.7%, and a total harmonic distortion of 2.0%.  相似文献   

6.
Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Photovoltaic power systems are usually integrated with some specific control algorithms to deliver the maximum possible power. Several maximum power point tracking (MPPT) methods that force the operating point to oscillate have been presented in the past few decades. In the MPPT system, the ideal operation is to determine the maximum power point (MPP) of the photovoltaic (PV) array directly rather than to track it by using the active operation of trial and error, which causes undesirable oscillation around the MPP. Since the output features of a PV cell vary with environment changes in irradiance and temperature from time to time, real-time operation is required to trace the variations of local MPPs in PV power systems. The method of real-time estimation proposed in this paper uses polynomials to demonstrate the power–voltage relationship of PV panels and implements the recursive least-squares method and Newton–Raphson method to identify the voltage of the optimal operating point. The effectiveness of the proposed methods is successfully demonstrated by computer simulations and experimental evaluations of two major types of PV panels, namely: 1) crystalline silicon and 2) copper–indium–diselenide thin film.  相似文献   

8.
The increasing number of photovoltaic inverters that are coming on to the PV market stresses the need to carry out a dynamic characterization of these elements and their maximum power point tracking (MPPT) algorithms under real operating conditions. In order to make these conditions repeatable at the laboratory, PV array simulators are used. However, actual simulators, including the commercial simulators, recreate only a single or small set of PV array characteristic curves in which quite commonly theoretical calculations are included in order to simulate irradiance and temperature artificial variations. This is far from being a recreation of the real and long dynamic behavior of a PV array or generator. The testing and evaluation of the performance of PV inverters and MPPT algorithms has to be carried out when the PV system moves dynamically according to real operating conditions, including processes such as rapidly changing atmospheric conditions, partial shadows, dawn, and nightfall. This paper tries to contribute to the analysis of this problem by means of an electronic system that both measures the real evolution of the characteristic curves of PV arrays at outdoor operation and then recreates them at the laboratory to test PV inverters. This way the equipment can highlight the different performances of PV inverters and MPPT techniques when they operate under real operating conditions. As an example, two commercial inverters are tested and analyzed under the recreated behavior of a PV generator during 2 singular days that include processes of partial shading and fast irradiance variations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a novel maximum-power-point tracking (MPPT) method with a simple algorithm for photovoltaic (PV) power generation systems. The method is based on use of a short-current pulse of the PV to determine an optimum operating current where the maximum output power can be obtained and completely differs from conventional hill-climbing-based methods. In the proposed system, the optimum operating current is instantaneously determined simply by taking a product of the short-current pulse amplitude and a parameter k because the optimum operating current is exactly proportional to the short current under various conditions of illuminance and temperature. Also, the system offers an identification capability of k by means of fast power-versus-current curve scanning, which makes the short-current pulse-based MPPT method adaptive to disturbances such as shades partially covering the PV panels and surface contamination. The above adaptive MPPT algorithm has been introduced into a current-controlled boost chopper and a multiple power converter system composed of PV-and-chopper modules. Various operating characteristics have experimentally been examined on this multiple PV-and-chopper module system from a practical viewpoint and excellent MPPT performance has been confirmed through the tests  相似文献   

10.
为了解决光伏(PV)系统在局部阴影条件下(PSC)的最大功率点跟踪问题,提出了一种基于改进粒子群算法(PSO)的快速最大功率点跟踪(MPPT)方法。与传统基于PSO的MPPT系统不同的是,采用了基于转换器电流动态行为的变量抽样时间策略(VSTS),并且为了更快速的实现最大功率点跟踪,引入三个重要因数,即:粒子数、收敛速度以及抽样时间。采用DSP平台对提出系统进行了具体实现和性能评估,实验结果显示相比其他类似系统,在不同条件(包括PSC)下,提出算法均能够实现速度跟踪且精确度较高。  相似文献   

11.
This paper proposes a three-phase photovoltaic (PV) system with three-level boosting maximum power point tracking (MPPT) control. A simple MPPT control using a power hysteresis tracks the maximum power point (MPP), giving direct duty control for the three-level boost converter. The three-level boost converter reduces the reverse recovery losses of the diodes. Also, a weighted-error proportional and integral (PI) controller is suggested to control the dc link voltage faster. All algorithms and controllers were implemented on a single-chip microprocessor. Experimental results obtained on a 10-kW prototype show high performance, such as an MPPT efficiency (MPPT effectiveness) of 99.6%, a near-unity power factor, and a power conversion efficiency of 96.2%.   相似文献   

12.
A Variable Step Size INC MPPT Method for PV Systems   总被引:3,自引:0,他引:3  
Maximum power point tracking (MPPT) techniques are employed in photovoltaic (PV) systems to make full utilization of PV array output power which depends on solar irradiation and ambient temperature. Among all the MPPT strategies, the incremental conductance (INC) algorithm is widely used due to the high tracking accuracy at steady state and good adaptability to the rapidly changing atmospheric conditions. In this paper, a modified variable step size INC MPPT algorithm is proposed, which automatically adjusts the step size to track the PV array maximum power point. Compared with the conventional fixed step size method, the proposed approach can effectively improve the MPPT speed and accuracy simultaneously. Furthermore, it is simple and can be easily implemented in digital signal processors. A theoretical analysis and the design principle of the proposed method are provided and its feasibility is also verified by simulation and experimental results.  相似文献   

13.
A single-phase three-wire photovoltaic energy conversion system with single-stage structure using a novel maximum power-point tracking (MPPT) algorithm is presented. An equivalent model of the proposed system is derived to analyze the characteristics of the system and to design the controller. Owing to the linear relation of the PV array parameters versus insolation, the model is easy to analyze. The proposed system employs a three-leg inverter to control the MPPT process, the line current, and neutral line current. A current-controlled MPPT algorithm controls the MPPT. A neutral line-mode controller maintains a utility neutral line current of zero. A line-mode controller controls the line current so as to provide power to the utility with a unity power factor. The proposed system acts as a solar generator on sunny days and functions as an active power filter on rainy days. Computer simulation and experimental results demonstrate the accuracy and the superior performance of the proposed technique.  相似文献   

14.
光伏电池的输出功率取决于外界环境(温度和光照条件)和负载状况,需采用最大功率点跟踪(MPPT)电路,才能使光伏电池始终输出最大功率,从而充分发挥光伏器件的光电转换效能.在比较了常用光伏发电系统控制的优缺点后,依据MPPT控制算法的基本工作原理,主电路采用双并联Boost电路,具有电压提升功能,并且能够提高DC-DC环节的额定功率和减小直流母线电压的纹波.针对传统扰动观察法存在的振荡和误判问题,提出了一种新型的基于双并联Boost电路的改进扰动观察法最大功率跟踪策略.在Matlab/Simulink下进行了建模与仿真,仿真结果表明,当外界环境发生变化时,系统能快速准确跟踪此变化,避免算法误判现象的发生,通过改变当前的负载阻抗,使之与光伏电池的输出阻抗等值相匹配采满足最大功率输出的要求,使系统始终工作在最大功率点处,并且在最大功率点处具有很好的稳态性能.最后通过实验验证了该算法的有效性.  相似文献   

15.
By means of bilinear interpolation and four reference current–voltage (IV) curves, an IV curve of a photovoltaic (PV) module is translated to desired conditions of irradiance and PV module temperature. The four reference IV curves are measured at two irradiance and two PV module temperature levels and contain all the essential PV module characteristic information for performing the bilinear interpolation. The interpolation is performed first with respect to open‐circuit voltage to account for PV module temperature, and second with respect to short‐circuit current to account for irradiance. The translation results over a wide range of irradiances and PV module temperatures agree closely with measured values for a group of PV modules representing seven different technologies. Root‐mean‐square errors were 1·5% or less for the IV curve parameters of maximum power, voltage at maximum power, current at maximum power, short‐circuit current, and open‐circuit voltage. The translation is applicable for determining the performance of a PV module for a specified test condition, or for PV system performance modeling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
介绍了光伏电池的特性,分析了光伏电池最大功率点跟踪(MPPT)的原理,针对光伏电池具有非线性和时滞性的特点,提出了一种模糊控制算法来跟踪光伏电池的最大功率点。仿真结果显示,系统具有良好的控制性能。  相似文献   

17.
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (VOC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm2 in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm2, is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m2. After starting-up, the system requires an irradiance of only 0.18 W/m2 (18 μW/cm2) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 μW. These values are, to the best of the authors’ knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 μW, which is comparable with reported values from circuits operating at similar power levels.  相似文献   

18.
在局部阴影条件下,光伏阵列的功率-电压(P-V)特性曲线呈现多峰现象,传统的最大功率点跟踪方法容易受困于局部最大功率点,造成输出功率的损失。提出了基于布谷鸟搜索算法(cuckoo search,CS)的MPPT新方法,利用Lévy飞行搜索机制快速、有效的跳出局部最优的束缚,完成对全局最大功率点的跟踪。仿真和实验验证了该方法的可行性和有效性。  相似文献   

19.
Photovoltaic (PV) power has been successfully used for over five decades. Whether in dc or ac form, photovoltaic cells provide power for systems in many applications on earth and space. Its principles of operation are therefore well understood, and circuit equivalents have been developed that accurately model the nonlinear relationship between the current and voltage of a photovoltaic cell. With the improved efficiencies of power electronics converters, it is now possible to operate photovoltaic system about its maximum power point (MPP) in order to improve the overall system efficiency. Hitherto, this problem has been tackled using tracking (MPPT) algorithms that iteratively find the point of maximum power and respond to changes in solar irradiance accordingly. A mathematical manipulation that uses the mean value theorem is presented here that provides the analytic solution of a point in a close neighborhood of the MPP. It is thoroughly proved that this point is enclosed in a ball of small radius that also contains the MPP and therefore can practically be considered as the MPP. Since the solution is analytic, no iterative schemes are necessary, and only a periodic measurement is required to adjust to changes in solar irradiance. A circuit is implemented that shows the validity of the theory and the accuracy of the solution.  相似文献   

20.
A novel maximum-power-point-tracking (MPPT) controller for a photovoltaic (PV) energy conversion system is presented. Using the slope of power versus voltage of a PV array, the proposed MPPT controller allows the conversion system to track the maximum power point very rapidly. As opposed to conventional two-stage designs, a single-stage configuration is implemented, resulting in size and weight reduction and increased efficiency. The proposed system acts as a solar generator on sunny days, in addition to working as an active power line conditioner on rainy days. Finally, computer simulations and experimental results demonstrate the superior performance of the proposed technique  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号