首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陶瓷粉体对注射成型流变特性的影响   总被引:2,自引:0,他引:2  
谢志鹏  黄勇 《陶瓷学报》1997,18(2):86-90
本文综述了陶瓷成型中固相体积分数与相对粘度的关系,研究了具有不同颗粒直径的Si3N4粉体对注射成型流变学的影响,根据颗粒级配理论,通过对不同分布的Si3N4粉体进行连续级配,以减小注射成型粘度。  相似文献   

2.
首次采用中压注塑成型技术(MPIM)制得性能优良的氮化硅轴承球.研究了粘结剂配方、注塑成型、低缺陷排胶、气氛压力烧结等工艺参数对氮化硅轴承球致密度、力学性能、表面与微观形貌的影响.结果表明,喂料固含量55.51%、注塑速率5 cm/s、注塑温度90℃、注塑实际压力75 bar、超临界CO2萃取+热脱脂两步法排胶等工艺过...  相似文献   

3.
Interaction between ceramic compacts and the encapsulation glass during the HIP process has been studied in a model system of silicon nitride and borosilicate glass. Attention has been focused on what happens when the pressure is first applied in the HIP-cycle, i.e. between about 1200 and 1500°C. At this stage the pore system of the ceramic green body is still rather unaffected by sintering. The model system was characterised to evaluate a possible viscous flow of glass into the green body. Two glass compositions, one with high and one with low viscosity, were used, measurements being made of their viscosity and their contact angle on the nitride. Applying Darcy's law it was predicted that the encapsulation glass with the lowest viscosity should penetrate about 1200 microns into the still open pore structure at 1450°C, but this was not observed experimentally. In the calculations no chemical reactions were assumed to take place. However, increases in hardness of heat-treated mixture of glass and silicon nitride powder indicates that nitrogen dissolves in the glass. It is known that nitrogen increases the viscosity of the glass and this would result in a more limited glass intrusion. After HIP the surface region of the dense ceramic exhibited a phase composition gradient of silicon oxynitride, down to approximately 100–200 microns into the bulk. ©  相似文献   

4.
《Ceramics International》2019,45(14):16982-16991
In powder injection molding process, it is important to analyze the rheological and thermal debinding behaviors of feedstock, because they can directly affect the final quality of products. Therefore, for the silicon nitride based feedstocks, the rheological and thermal debinding behaviors were investigated and compared between feedstocks prepared with the combination of two types of powders and sintering aid ratios. At first, the optimal solids loading for each feedstock was determined based on the results of the torque rheometer experiment. The viscosity of the feedstocks was measured using the capillary rheometer, and rheological properties were evaluated with the Power Law-Arrhenius model. Silicon nitride (JPN) feedstock with 5 wt% yttria and 2 wt% alumina (JPN+5Y2A) had the highest moldability index among all feedstocks. The powders with sintering aid ratio of 5 wt% yttria and 2 wt% alumina made the feedstocks have a high moldability index. Thermogravimetric experiment was also performed to analyze the pyrolysis behavior of the feedstocks, and the apparent activation energies for each feedstock were obtained using Kissinger method with the thermogravimetric analysis results. Based on the results, the master decomposition curve (MDC) was developed, and the utility of MDC for optimizing the thermal debinding process was verified.  相似文献   

5.
《Ceramics International》2016,42(3):4347-4353
A direct coagulation casting method for silicon nitride suspension via dispersant reaction was reported. Tetramethylammonium hydroxide (TMAOH) was used as dispersant to prepare silicon nitride suspension with high solid loading and low viscosity. Influences of TMAOH and pH value on the dispersion of silicon nitride powder were investigated. Glycerol diacetate (GDA) was used to coagulate the silicon nitride suspension. Influences of the concentration of glycerol diacetate on the viscosity and pH value of the suspension were investigated. It was indicated that high viscosity sufficient to coagulate the suspension was achieved by adding 1.0–2.0 vol% glycerol diacetate at 40–70 °C. The coagulation mechanism was proposed that the silicon nitride suspension was destabilized by dispersant reacting with acetic acid which was hydrolyzed from glycerol diacetate at elevated temperature. Coagulated samples could be demolded without deformation by treating 50 vol% silicon nitride suspensions with 0.2 wt% tetramethylammonium hydroxide and 1.0–2.0 vol% glycerol diacetate at different temperatures. Dense silicon nitride ceramics with relative density above 98.8% had been prepared by this method using glycerol diacetate as coagulating agent sintered by different methods.  相似文献   

6.
首先建立轻轨铁路绝缘器主绝缘板的树脂传递模塑充模过程的三维数学模型,然后对该模型进行了数值模拟分析,研究注射压力、树脂黏度等参数对成型过程的影响,最后提出了消除气泡缺陷的工艺条件.  相似文献   

7.
The Brabender Plasti-Corder is shown to be an effective tool for predicting the processing characteristics of thermoplastic polymers. Procedures for determining the molding temperature range, the relative melt viscosity over a continuous temperature range, and the stability of molding and experimental curtain coating materials are presented. Molding temperature ranges can be determined by first establishing the Brabender torque which corresponds to the maximum viscosity at which a material will just fill the cavity in a particular injection system under full injection pressure and maximum injection rate. This torque is constant for any material to be molded in this system. A Brabender torque-temperature curve is then obtained on the pertinent resin and the temperature which corresponds to the torque associated with the maximum viscosity is the minimum molding temperature. Maximum molding temperature is the temperature at which the log of the torque deviates from a linear dependence on temperature. The stability of thermoplastic compositions can be shown by a Brabender torque-time curve at constant temperature. An unstable polymer shows decreasing torque with time if the decomposition predominantly consists of chain scission.  相似文献   

8.
注射成型过程中非牛顿塑料熔体的粘度模型   总被引:10,自引:1,他引:9  
本文在探讨塑料熔体粘度模型基础上,重点讨论了一种适用范围更广的Cross粘度模型,并根据塑料熔体在注射成型过程的流动特点,采用Arrhenius方程建立了适用于注射充填过程的五参数Cross粘度模型和利用WLF方程建立起适用于注射保压过程的七参数Cross粘度模型。具体讨论模型的特征和适用范围,为注射模设计和成型模拟提供了理论依据。  相似文献   

9.
Online viscosity information on processing lines can reflect the material flow resistance and offer valuable guidance for manufacturing across various industries. Considering the accuracy, devices, and processes involved in injection molding, characterizing the melt's flow state during material processing poses a significant challenge. To reduce investment in viscometers, avoid influencing the components' surface aesthetics due to the installation of sensors, and make the flow state detect online in mold, this study designs a rheometric mold with cylindrical runners for identifying the in situ viscosity of molten resin during injection molding. The detection conditions of injection speed and cavity pressure variations, the entrance effect, and the viscous dissipation for Polycarbonate are analyzed under various conditions. The in situ viscosity is identified and compared with the standard cross-WLF model. The result shows that the melt velocity and cavity pressure variations during the filling process create a stable environment for in situ rheological characterization and the detected viscosity is related to the shear rate, melt temperature, and channel dimension in injection molding. The designed mold with cylindrical runners for determining the in situ thermal-rheological behavior of polymer is distinguished successfully and exhibits prospects for the development of low-cost, nondestructive, and inner-mold measurement in manufacturing applications.  相似文献   

10.
聚乙二醇400(polyethylene glycol 400,PEG400)作为润湿剂用于制备高浓度氮化硅悬浮液,以简单的工艺,在降低料浆黏度的同时提高其固相含量.为表征润湿剂对高固相含量下氮化硅悬浮液的润湿特性,测试了其黏度及在润湿剂作用下的润湿性和吸附特性.结果表明:当悬浮液固相含量高达60%(体积分数)时,在PEG400作用下其黏度可以显著降低.基于悬浮液中颗粒堆积形式,建立了等径密堆双球模型,阐释了PEG400作用机理.  相似文献   

11.
A practically-oriented computer model which computes the temperature, pressure, and velocity fields in a cavity during the mold filling portion of the injection molding process is described. The model is structured so that it can be used for cavities having non-simple shapes and for commonly used molding compounds with complicated viscosity, shear rate, temperature relationships. Predictions from the model are found to be in good agreement with results obtained from exact solutions to special cases. Model predictions in molding problems have been found to correctly describe trends such as an increase in the pressure required to fill molds as injection rate, shot temperature, and mold temperature decrease, and to be reasonably accurate when compared to data for plaque, disc, and telephone housing molds over a wide range of molding conditions. Some illustrative examples of the use of the model in solving real molding problems are provided.  相似文献   

12.
氮化硅流延膜的制备   总被引:3,自引:0,他引:3  
流延成型是一种制备高质量陶瓷基片的成型方法.氮化硅是一种高热导率的材料,有望在电子基片领域获得应用.本文利用流延成型制备了具有较好柔韧性和一定强度的氮化硅流延素坯膜.研究了无水乙醇、无水乙醇/丁酮作为溶剂时对浆料粘度的影响.通过优化流延浆料添加剂的各种配比,得出了适合氮化硅粉体(SN-E10)流延的最佳配方.  相似文献   

13.
以脉动压力诱导注射成型充模过程浇口流道中熔体壁面表观剪切黏度的数学模型为基础,通过实时测量记录螺杆位置变化以及浇口流道两端熔体压力变化,表征脉动压力诱导注射成型充模过程熔体实时表现剪切黏度的方法,通过实验研究发现,脉动压力的引入使充模过程、熔体的剪切应力和表观剪切黏度降低,同时加剧了熔体的剪切速率变化,在强烈的振动条件下会引起动态充模过程中某些时刻出现断流现象.  相似文献   

14.
Si3N4陶瓷注射成型的流变特性   总被引:3,自引:0,他引:3  
  相似文献   

15.
It is typically difficult to measure viscosity of a fast polymerizing molding compound using a rheometer. So, spiral mold filling experimental data were used to obtain viscosity functions of a silica filled epoxy–novolac molding compound. The functions could describe the effect of temperature and conversion on viscosity change during cure. With the flow rate data obtained from the mold filling experiments, parameters of the viscosity functions were determined through regression of a simulation model developed in this study. The reaction kinetic equation considering an autocatalytic reaction mechanism was used for the molding compound in the simulation model. The viscosity function of the molding compound determined from the rheometer data and the reaction kinetic data measured at a relatively slow reacting condition was compared with simulation results. The viscosity function determined through nonlinear regression of the spiral mold filling simulation model showed a good correlation with the viscosity function obtained from the rheometric study. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 873–884, 2001  相似文献   

16.
Numerical calculations of flow and injection pressures during injection molding of fiber-filled thermoplastics are compared to experimental measurements. The flow is modeled as a 2–D, nonisothermal, free-surface flow with a new viscosity model dependent upon temperature, pressure, and fiber concentration. The steady-state viscosity model is developed to account for the fiber-concentration and shear-thinning viscosities of the polymer based upon combining the Dinh-Armstrong fiber model with the Carreau viscosity model. The new model has four parameters, three from the Carreau model and one from Dinh-Armstrong for fiber concentrations. The new model calculates reasonably well the steady-state viscosity of fiber-filled polypropylene over the shear rate range of 0.01 s?1to 20 s?1. The numerical work successfully describes the flow of fiber-filled polymers during injection molding using finite-difference solutions for the transport equations and marker particles to track the flow front. The comparisons between the calculated and measured pressure drops for an injection molded part were reasonable for the unfilled and fiber-filled polypropylene materials. The pressure drop comparison is very good for slow fill of a base case resin, Himont polypropylene, but not as good for fast fill of the resin. The pressure drop comparison is very good for fast fill of glass-filled resin, DSM polypropylene with 10% and 20% short fibers, but not as good for slow fill of the resin and resin plus fibers.  相似文献   

17.
聚合物熔体流变性能对气辅注塑工艺的影响   总被引:1,自引:0,他引:1  
应用HeleShaw物理模型和改进的Cros流变模型及有限元算法对5种聚丙烯的气辅注塑过程进行模拟,研究不同聚丙烯材料在充模速度相同的条件下的压力及锁模力变化规律。结果表明,气辅注塑在气体注射后与传统注塑有较大差异,所需压力、锁模力均比传统注塑有显著降低,且聚合物的熔体流动速率越小,气体注射后产生的压力降越大,表明在生产中应尽可能选用高熔体流动速率树脂以利于气辅注塑工艺。  相似文献   

18.
The injection molding of reprocessed plastics with a preplastication plunger injection‐molding machine was investigated with a focus on the processing conditions. The process of the filling of the resin into the mold is much better controlled with preplastication than with processing in a conventional injection‐molding machine. Reprocessing of the resin leads to a reduction in molecular weight due to drastic changes in the resin morphology, thereby causing a reduction in melt viscosity. Direct experimental evidence for reduced viscosity was obtained from measurements of the filling pressure recorded on the machine and also with a melt‐flow indexer. The results of this study provide a practical solution for reducing the resin temperature when reprocessed resin is used in the injection molding of plastics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1455–1461, 2001  相似文献   

19.
修正了脉动压力诱导注射成型充模过程浇口流道中熔体壁面表观剪切黏度的数学模型,并介绍了建立在此基础上的通过实时测量并记录螺杆位置变化以及浇口流道两端熔体压力变化来表征脉动压力诱导注射成型充模过程熔体实时表观剪切黏度的方法,通过实验研究发现,脉动压力的引入对熔体的实时表观剪切黏度产生了深刻的影响,且降低了充模过程单振动周期内壁面熔体的平均表观剪切黏度及受到的平均剪切应力。在此过程中,还提出了特定振动参数下熔体剪切应力与剪切速率之间相位角的计算方法。  相似文献   

20.
《Ceramics International》2022,48(5):6488-6496
In view of technical difficulties in preparing ceramics with complex shapes, gel casting combined with 3D printing was here adopted to prepare silicon carbide ceramic green body, and gaseous silicon infiltration sintering was used to prepare 3D lattice-structured ceramics. The preparation of the slurry, gel curing, and ceramic molding was investigated. Results demonstrate that the ratio of components affects the fluidity and stability of slurry. However, when volume fraction of the solid phase of the slurry reaches 56%, the viscosity of slurry is only 300 mPa s, and drying shrinkage rate of green body is 6.6%; these characteristics make slurry suitable for 3D complex model injection molding. Furthermore, both the temperature and the initiator affect gel curing speed. As the temperature and initiator content increase, the induction and gel time are rapidly shortened. When demolding at 300 °C and when gaseous silicon infiltration sintering is carried out at 1550 °C, a 3D lattice-structured ceramic with relative density of 87% and average compressive strength of 433 MPa can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号